Preparation of Ga2O3/ZnO/WO3 double S-scheme heterojunction composite nanofibers by electrospinning method for enhancing photocatalytic activity

Ga 2 O 3 is a semiconductor material with ultra-wide band gap ( E g  = 4.9 eV), which has photocatalytic activity only under deep ultraviolet light irradiation ( λ  

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2021-03, Vol.32 (6), p.7307-7318
Hauptverfasser: Zhang, Guixiang, Zhang, Haiming, Wang, Rufeng, Liu, Haoxuan, He, Qingchen, Zhang, Xianjing, Li, Yujie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7318
container_issue 6
container_start_page 7307
container_title Journal of materials science. Materials in electronics
container_volume 32
creator Zhang, Guixiang
Zhang, Haiming
Wang, Rufeng
Liu, Haoxuan
He, Qingchen
Zhang, Xianjing
Li, Yujie
description Ga 2 O 3 is a semiconductor material with ultra-wide band gap ( E g  = 4.9 eV), which has photocatalytic activity only under deep ultraviolet light irradiation ( λ  
doi_str_mv 10.1007/s10854-021-05441-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505089038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505089038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-6f5585c2b59f17d9ff728b48c8b8dc3a5cb3da6e2c0e0a6983be38327409de2e3</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVJoZtN_0BPgp6VHevDlo8lpEkhsIU0NOQiZHkUe9mVHElb2H-RnxwnW8gtp4Hhed9hHkK-VXBeATSrXIFWkgGvGCgpKyY_kUWlGsGk5vcnZAGtaphUnH8hpzlvAKCWQi_I8--Ek022jDHQ6OmV5Wuxegjr1d-1oH3cd1uktyy7AXdIByyY4mYf3Bvv4m6KeSxIgw3Rjx2mTLsDxS26kmKexhDG8Eh3WIbYUx8TxTDY4F6X0xBLdLbY7aGMjtq58t9YDmfks7fbjF__zyW5-3n55-Ka3ayvfl38uGFOqLqw2iulleOdan3V9K33Dded1E53unfCKteJ3tbIHSDYutWiQ6EFbyS0PXIUS_L92Dul-LTHXMwm7lOYTxquQIFuYeaXhB8pN7-TE3ozpXFn08FUYF7Nm6N5M5s3b-aNnEPiGMozHB4xvVd_kHoBoEaJ0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505089038</pqid></control><display><type>article</type><title>Preparation of Ga2O3/ZnO/WO3 double S-scheme heterojunction composite nanofibers by electrospinning method for enhancing photocatalytic activity</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Guixiang ; Zhang, Haiming ; Wang, Rufeng ; Liu, Haoxuan ; He, Qingchen ; Zhang, Xianjing ; Li, Yujie</creator><creatorcontrib>Zhang, Guixiang ; Zhang, Haiming ; Wang, Rufeng ; Liu, Haoxuan ; He, Qingchen ; Zhang, Xianjing ; Li, Yujie</creatorcontrib><description>Ga 2 O 3 is a semiconductor material with ultra-wide band gap ( E g  = 4.9 eV), which has photocatalytic activity only under deep ultraviolet light irradiation ( λ  &lt; 258 nm). In this study, Ga 2 O 3 /ZnO/WO 3 double S-scheme heterojunction composite nanofibers were prepared by electrospinning method. The results show that the composite nanofibers have strong photocatalytic activity and sensitive response under UV–visible light irradiation. According to the heterojunction energy band matching theory of S-scheme, the photogenerated electrons (e − ) of Ga 2 O 3 , ZnO, and WO 3 are transferred from the valence band (VB) to the conduction band (CB), and photogenerated holes (h + ) are generated in VB under the UV–visible light irradiation with sufficient energy. These factors (the internal electric field, band bending, and Coulomb attraction) are the driving forces to promote the useless e − and h + are eliminated through recombination. Consequently, the powerful e − with strong reducing ability in the CB of Ga 2 O 3 and the h + with strong oxidizing ability in the VB of WO 3 are preserved to engage in photocatalytic reactions. With Rhodamine B (Rh B) dye as the degradation target, the degradation efficiency of WO 3 , ZnO/WO 3 , and Ga 2 O 3 /ZnO/WO 3 nanofibers were measured under UV–visible light irradiation for 120 min. The experimental results show that compared with WO 3 and ZnO/WO 3 nanofibers, Ga 2 O 3 /ZnO/WO 3 composite nanofibers have the highest photocatalytic activity and excellent redox ability as photocatalyst. Besides, the response range of Ga 2 O 3 /ZnO/WO 3 to the ultraviolet–visible spectrum is greatly expanded.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-05441-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Catalytic activity ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Conduction bands ; Degradation ; Electric fields ; Electrospinning ; Energy bands ; Gallium oxides ; Heterojunctions ; Light irradiation ; Materials Science ; Nanofibers ; Optical and Electronic Materials ; Oxidation ; Photocatalysis ; Rhodamine ; Semiconductor materials ; Ultraviolet radiation ; Ultraviolet spectra ; Valence band ; Visible spectrum ; Zinc oxide</subject><ispartof>Journal of materials science. Materials in electronics, 2021-03, Vol.32 (6), p.7307-7318</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-6f5585c2b59f17d9ff728b48c8b8dc3a5cb3da6e2c0e0a6983be38327409de2e3</citedby><cites>FETCH-LOGICAL-c356t-6f5585c2b59f17d9ff728b48c8b8dc3a5cb3da6e2c0e0a6983be38327409de2e3</cites><orcidid>0000-0001-5999-1505</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-05441-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-05441-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Guixiang</creatorcontrib><creatorcontrib>Zhang, Haiming</creatorcontrib><creatorcontrib>Wang, Rufeng</creatorcontrib><creatorcontrib>Liu, Haoxuan</creatorcontrib><creatorcontrib>He, Qingchen</creatorcontrib><creatorcontrib>Zhang, Xianjing</creatorcontrib><creatorcontrib>Li, Yujie</creatorcontrib><title>Preparation of Ga2O3/ZnO/WO3 double S-scheme heterojunction composite nanofibers by electrospinning method for enhancing photocatalytic activity</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Ga 2 O 3 is a semiconductor material with ultra-wide band gap ( E g  = 4.9 eV), which has photocatalytic activity only under deep ultraviolet light irradiation ( λ  &lt; 258 nm). In this study, Ga 2 O 3 /ZnO/WO 3 double S-scheme heterojunction composite nanofibers were prepared by electrospinning method. The results show that the composite nanofibers have strong photocatalytic activity and sensitive response under UV–visible light irradiation. According to the heterojunction energy band matching theory of S-scheme, the photogenerated electrons (e − ) of Ga 2 O 3 , ZnO, and WO 3 are transferred from the valence band (VB) to the conduction band (CB), and photogenerated holes (h + ) are generated in VB under the UV–visible light irradiation with sufficient energy. These factors (the internal electric field, band bending, and Coulomb attraction) are the driving forces to promote the useless e − and h + are eliminated through recombination. Consequently, the powerful e − with strong reducing ability in the CB of Ga 2 O 3 and the h + with strong oxidizing ability in the VB of WO 3 are preserved to engage in photocatalytic reactions. With Rhodamine B (Rh B) dye as the degradation target, the degradation efficiency of WO 3 , ZnO/WO 3 , and Ga 2 O 3 /ZnO/WO 3 nanofibers were measured under UV–visible light irradiation for 120 min. The experimental results show that compared with WO 3 and ZnO/WO 3 nanofibers, Ga 2 O 3 /ZnO/WO 3 composite nanofibers have the highest photocatalytic activity and excellent redox ability as photocatalyst. Besides, the response range of Ga 2 O 3 /ZnO/WO 3 to the ultraviolet–visible spectrum is greatly expanded.</description><subject>Catalytic activity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Conduction bands</subject><subject>Degradation</subject><subject>Electric fields</subject><subject>Electrospinning</subject><subject>Energy bands</subject><subject>Gallium oxides</subject><subject>Heterojunctions</subject><subject>Light irradiation</subject><subject>Materials Science</subject><subject>Nanofibers</subject><subject>Optical and Electronic Materials</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Rhodamine</subject><subject>Semiconductor materials</subject><subject>Ultraviolet radiation</subject><subject>Ultraviolet spectra</subject><subject>Valence band</subject><subject>Visible spectrum</subject><subject>Zinc oxide</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1r3DAQhkVJoZtN_0BPgp6VHevDlo8lpEkhsIU0NOQiZHkUe9mVHElb2H-RnxwnW8gtp4Hhed9hHkK-VXBeATSrXIFWkgGvGCgpKyY_kUWlGsGk5vcnZAGtaphUnH8hpzlvAKCWQi_I8--Ek022jDHQ6OmV5Wuxegjr1d-1oH3cd1uktyy7AXdIByyY4mYf3Bvv4m6KeSxIgw3Rjx2mTLsDxS26kmKexhDG8Eh3WIbYUx8TxTDY4F6X0xBLdLbY7aGMjtq58t9YDmfks7fbjF__zyW5-3n55-Ka3ayvfl38uGFOqLqw2iulleOdan3V9K33Dded1E53unfCKteJ3tbIHSDYutWiQ6EFbyS0PXIUS_L92Dul-LTHXMwm7lOYTxquQIFuYeaXhB8pN7-TE3ozpXFn08FUYF7Nm6N5M5s3b-aNnEPiGMozHB4xvVd_kHoBoEaJ0w</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zhang, Guixiang</creator><creator>Zhang, Haiming</creator><creator>Wang, Rufeng</creator><creator>Liu, Haoxuan</creator><creator>He, Qingchen</creator><creator>Zhang, Xianjing</creator><creator>Li, Yujie</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-5999-1505</orcidid></search><sort><creationdate>20210301</creationdate><title>Preparation of Ga2O3/ZnO/WO3 double S-scheme heterojunction composite nanofibers by electrospinning method for enhancing photocatalytic activity</title><author>Zhang, Guixiang ; Zhang, Haiming ; Wang, Rufeng ; Liu, Haoxuan ; He, Qingchen ; Zhang, Xianjing ; Li, Yujie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-6f5585c2b59f17d9ff728b48c8b8dc3a5cb3da6e2c0e0a6983be38327409de2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Catalytic activity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Conduction bands</topic><topic>Degradation</topic><topic>Electric fields</topic><topic>Electrospinning</topic><topic>Energy bands</topic><topic>Gallium oxides</topic><topic>Heterojunctions</topic><topic>Light irradiation</topic><topic>Materials Science</topic><topic>Nanofibers</topic><topic>Optical and Electronic Materials</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Rhodamine</topic><topic>Semiconductor materials</topic><topic>Ultraviolet radiation</topic><topic>Ultraviolet spectra</topic><topic>Valence band</topic><topic>Visible spectrum</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guixiang</creatorcontrib><creatorcontrib>Zhang, Haiming</creatorcontrib><creatorcontrib>Wang, Rufeng</creatorcontrib><creatorcontrib>Liu, Haoxuan</creatorcontrib><creatorcontrib>He, Qingchen</creatorcontrib><creatorcontrib>Zhang, Xianjing</creatorcontrib><creatorcontrib>Li, Yujie</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guixiang</au><au>Zhang, Haiming</au><au>Wang, Rufeng</au><au>Liu, Haoxuan</au><au>He, Qingchen</au><au>Zhang, Xianjing</au><au>Li, Yujie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of Ga2O3/ZnO/WO3 double S-scheme heterojunction composite nanofibers by electrospinning method for enhancing photocatalytic activity</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>32</volume><issue>6</issue><spage>7307</spage><epage>7318</epage><pages>7307-7318</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Ga 2 O 3 is a semiconductor material with ultra-wide band gap ( E g  = 4.9 eV), which has photocatalytic activity only under deep ultraviolet light irradiation ( λ  &lt; 258 nm). In this study, Ga 2 O 3 /ZnO/WO 3 double S-scheme heterojunction composite nanofibers were prepared by electrospinning method. The results show that the composite nanofibers have strong photocatalytic activity and sensitive response under UV–visible light irradiation. According to the heterojunction energy band matching theory of S-scheme, the photogenerated electrons (e − ) of Ga 2 O 3 , ZnO, and WO 3 are transferred from the valence band (VB) to the conduction band (CB), and photogenerated holes (h + ) are generated in VB under the UV–visible light irradiation with sufficient energy. These factors (the internal electric field, band bending, and Coulomb attraction) are the driving forces to promote the useless e − and h + are eliminated through recombination. Consequently, the powerful e − with strong reducing ability in the CB of Ga 2 O 3 and the h + with strong oxidizing ability in the VB of WO 3 are preserved to engage in photocatalytic reactions. With Rhodamine B (Rh B) dye as the degradation target, the degradation efficiency of WO 3 , ZnO/WO 3 , and Ga 2 O 3 /ZnO/WO 3 nanofibers were measured under UV–visible light irradiation for 120 min. The experimental results show that compared with WO 3 and ZnO/WO 3 nanofibers, Ga 2 O 3 /ZnO/WO 3 composite nanofibers have the highest photocatalytic activity and excellent redox ability as photocatalyst. Besides, the response range of Ga 2 O 3 /ZnO/WO 3 to the ultraviolet–visible spectrum is greatly expanded.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-05441-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5999-1505</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2021-03, Vol.32 (6), p.7307-7318
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2505089038
source Springer Nature - Complete Springer Journals
subjects Catalytic activity
Characterization and Evaluation of Materials
Chemistry and Materials Science
Conduction bands
Degradation
Electric fields
Electrospinning
Energy bands
Gallium oxides
Heterojunctions
Light irradiation
Materials Science
Nanofibers
Optical and Electronic Materials
Oxidation
Photocatalysis
Rhodamine
Semiconductor materials
Ultraviolet radiation
Ultraviolet spectra
Valence band
Visible spectrum
Zinc oxide
title Preparation of Ga2O3/ZnO/WO3 double S-scheme heterojunction composite nanofibers by electrospinning method for enhancing photocatalytic activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A08%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20Ga2O3/ZnO/WO3%20double%20S-scheme%20heterojunction%20composite%20nanofibers%20by%20electrospinning%20method%20for%20enhancing%20photocatalytic%20activity&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Zhang,%20Guixiang&rft.date=2021-03-01&rft.volume=32&rft.issue=6&rft.spage=7307&rft.epage=7318&rft.pages=7307-7318&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-05441-4&rft_dat=%3Cproquest_cross%3E2505089038%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505089038&rft_id=info:pmid/&rfr_iscdi=true