Towards Semi-autonomous Robotic Inspection and Mapping in Confined Spaces with the EspeleoRobô

Autonomous mobile devices operating in confined environments, such as pipes, underground tunnel systems, and cave networks, face multiple open challenges from the robotics perspective. Those challenges, such as mobility, localization, and mapping in GPS denied scenarios, are receiving particular att...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & robotic systems 2021-04, Vol.101 (4), Article 69
Hauptverfasser: Azpúrua, Héctor, Rezende, Adriano, Potje, Guilherme, Júnior, Gilmar Pereira da Cruz, Fernandes, Rafael, Miranda, Victor, Filho, Levi Welington de Resende, Domingues, Jacó, Rocha, Filipe, de Sousa, Frederico Luiz Martins, de Barros, Luiz Guilherme Dias, Nascimento, Erickson R., Macharet, Douglas G., Pessin, Gustavo, Freitas, Gustavo M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of intelligent & robotic systems
container_volume 101
creator Azpúrua, Héctor
Rezende, Adriano
Potje, Guilherme
Júnior, Gilmar Pereira da Cruz
Fernandes, Rafael
Miranda, Victor
Filho, Levi Welington de Resende
Domingues, Jacó
Rocha, Filipe
de Sousa, Frederico Luiz Martins
de Barros, Luiz Guilherme Dias
Nascimento, Erickson R.
Macharet, Douglas G.
Pessin, Gustavo
Freitas, Gustavo M.
description Autonomous mobile devices operating in confined environments, such as pipes, underground tunnel systems, and cave networks, face multiple open challenges from the robotics perspective. Those challenges, such as mobility, localization, and mapping in GPS denied scenarios, are receiving particular attention from the academy and industry. One example is the Brazilian mining company Vale S.A., which is employing a robot – EspeleoRobô (SpeleoRobot) – to access restricted and dangerous areas for human workers. The EspeleoRobô is a robot initially designed for natural cave inspection during teleoperated missions. It is now being used to monitor other types of confined environments, such as dam galleries and other restrained or dangerous areas. This paper describes the platform in its current version and the pipeline used for semi-autonomous inspection in confined environments. The pipeline includes photorealistic mapping techniques, Simultaneous Localization and Mapping (SLAM) with LiDAR, path planning based on mobility optimization, and navigation control using vector fields to reduce operator dependency of the robot operation. The proposed concept was validated in simulations with a realistic underground tunnel system and in representative real-world scenarios. The results endorse the viability of using the proposed concept for real deployments.
doi_str_mv 10.1007/s10846-021-01321-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2505089003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724059147</galeid><sourcerecordid>A724059147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-294bf99baf2d61aff74148997cd5a632a3b9a3944be3fad1111b32dde540982d3</originalsourceid><addsrcrecordid>eNp9kNtKAzEQhoMoWA8v4FXA69XJqbu5LKUeQBE8XIfsJmlT2mRNtojv5Rv4YkZX8M4JzEDyfzOZH6EzAhcEoL7MBBo-rYCSCggrWeyhCRE1q4CD3EcTkN9PVE4P0VHOawCQjZATpJ7jm04m4ye79ZXeDTHEbdxl_BjbOPgO34bc227wMWAdDL7Xfe_DEvuA5zE4H6zBT73ubMZvfljhYWXxohAbG0uHz48TdOD0JtvT33qMXq4Wz_Ob6u7h-nY-u6s6JpqhopK3TspWO2qmRDtXc8IbKevOCD1lVLNWaiY5by1z2pASLaPGWFHWa6hhx-h87Nun-LqzeVDruEuhjFRUgIBGArCiuhhVS72xygcXh6S7ckzZvovBOl_uZzXlICThdQHoCHQp5pysU33yW53eFQH17bwanVfFefXjvBIFYiOUizgsbfr7yz_UF8YBhuU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505089003</pqid></control><display><type>article</type><title>Towards Semi-autonomous Robotic Inspection and Mapping in Confined Spaces with the EspeleoRobô</title><source>Springer Nature - Complete Springer Journals</source><creator>Azpúrua, Héctor ; Rezende, Adriano ; Potje, Guilherme ; Júnior, Gilmar Pereira da Cruz ; Fernandes, Rafael ; Miranda, Victor ; Filho, Levi Welington de Resende ; Domingues, Jacó ; Rocha, Filipe ; de Sousa, Frederico Luiz Martins ; de Barros, Luiz Guilherme Dias ; Nascimento, Erickson R. ; Macharet, Douglas G. ; Pessin, Gustavo ; Freitas, Gustavo M.</creator><creatorcontrib>Azpúrua, Héctor ; Rezende, Adriano ; Potje, Guilherme ; Júnior, Gilmar Pereira da Cruz ; Fernandes, Rafael ; Miranda, Victor ; Filho, Levi Welington de Resende ; Domingues, Jacó ; Rocha, Filipe ; de Sousa, Frederico Luiz Martins ; de Barros, Luiz Guilherme Dias ; Nascimento, Erickson R. ; Macharet, Douglas G. ; Pessin, Gustavo ; Freitas, Gustavo M.</creatorcontrib><description>Autonomous mobile devices operating in confined environments, such as pipes, underground tunnel systems, and cave networks, face multiple open challenges from the robotics perspective. Those challenges, such as mobility, localization, and mapping in GPS denied scenarios, are receiving particular attention from the academy and industry. One example is the Brazilian mining company Vale S.A., which is employing a robot – EspeleoRobô (SpeleoRobot) – to access restricted and dangerous areas for human workers. The EspeleoRobô is a robot initially designed for natural cave inspection during teleoperated missions. It is now being used to monitor other types of confined environments, such as dam galleries and other restrained or dangerous areas. This paper describes the platform in its current version and the pipeline used for semi-autonomous inspection in confined environments. The pipeline includes photorealistic mapping techniques, Simultaneous Localization and Mapping (SLAM) with LiDAR, path planning based on mobility optimization, and navigation control using vector fields to reduce operator dependency of the robot operation. The proposed concept was validated in simulations with a realistic underground tunnel system and in representative real-world scenarios. The results endorse the viability of using the proposed concept for real deployments.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-021-01321-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Confined spaces ; Control ; Electrical Engineering ; Electronic devices ; Engineering ; Fields (mathematics) ; Inspection ; Localization ; Mechanical Engineering ; Mechatronics ; Mobile devices ; Optical radar ; Optimization ; Path planning ; Regular Paper ; Robotics ; Robots ; Simultaneous localization and mapping ; Topical Collection on ICAR 2019 Special Issue ; Tunnels ; Underground caverns</subject><ispartof>Journal of intelligent &amp; robotic systems, 2021-04, Vol.101 (4), Article 69</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-294bf99baf2d61aff74148997cd5a632a3b9a3944be3fad1111b32dde540982d3</citedby><cites>FETCH-LOGICAL-c358t-294bf99baf2d61aff74148997cd5a632a3b9a3944be3fad1111b32dde540982d3</cites><orcidid>0000-0002-4182-2540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-021-01321-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-021-01321-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Azpúrua, Héctor</creatorcontrib><creatorcontrib>Rezende, Adriano</creatorcontrib><creatorcontrib>Potje, Guilherme</creatorcontrib><creatorcontrib>Júnior, Gilmar Pereira da Cruz</creatorcontrib><creatorcontrib>Fernandes, Rafael</creatorcontrib><creatorcontrib>Miranda, Victor</creatorcontrib><creatorcontrib>Filho, Levi Welington de Resende</creatorcontrib><creatorcontrib>Domingues, Jacó</creatorcontrib><creatorcontrib>Rocha, Filipe</creatorcontrib><creatorcontrib>de Sousa, Frederico Luiz Martins</creatorcontrib><creatorcontrib>de Barros, Luiz Guilherme Dias</creatorcontrib><creatorcontrib>Nascimento, Erickson R.</creatorcontrib><creatorcontrib>Macharet, Douglas G.</creatorcontrib><creatorcontrib>Pessin, Gustavo</creatorcontrib><creatorcontrib>Freitas, Gustavo M.</creatorcontrib><title>Towards Semi-autonomous Robotic Inspection and Mapping in Confined Spaces with the EspeleoRobô</title><title>Journal of intelligent &amp; robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>Autonomous mobile devices operating in confined environments, such as pipes, underground tunnel systems, and cave networks, face multiple open challenges from the robotics perspective. Those challenges, such as mobility, localization, and mapping in GPS denied scenarios, are receiving particular attention from the academy and industry. One example is the Brazilian mining company Vale S.A., which is employing a robot – EspeleoRobô (SpeleoRobot) – to access restricted and dangerous areas for human workers. The EspeleoRobô is a robot initially designed for natural cave inspection during teleoperated missions. It is now being used to monitor other types of confined environments, such as dam galleries and other restrained or dangerous areas. This paper describes the platform in its current version and the pipeline used for semi-autonomous inspection in confined environments. The pipeline includes photorealistic mapping techniques, Simultaneous Localization and Mapping (SLAM) with LiDAR, path planning based on mobility optimization, and navigation control using vector fields to reduce operator dependency of the robot operation. The proposed concept was validated in simulations with a realistic underground tunnel system and in representative real-world scenarios. The results endorse the viability of using the proposed concept for real deployments.</description><subject>Artificial Intelligence</subject><subject>Confined spaces</subject><subject>Control</subject><subject>Electrical Engineering</subject><subject>Electronic devices</subject><subject>Engineering</subject><subject>Fields (mathematics)</subject><subject>Inspection</subject><subject>Localization</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Mobile devices</subject><subject>Optical radar</subject><subject>Optimization</subject><subject>Path planning</subject><subject>Regular Paper</subject><subject>Robotics</subject><subject>Robots</subject><subject>Simultaneous localization and mapping</subject><subject>Topical Collection on ICAR 2019 Special Issue</subject><subject>Tunnels</subject><subject>Underground caverns</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kNtKAzEQhoMoWA8v4FXA69XJqbu5LKUeQBE8XIfsJmlT2mRNtojv5Rv4YkZX8M4JzEDyfzOZH6EzAhcEoL7MBBo-rYCSCggrWeyhCRE1q4CD3EcTkN9PVE4P0VHOawCQjZATpJ7jm04m4ye79ZXeDTHEbdxl_BjbOPgO34bc227wMWAdDL7Xfe_DEvuA5zE4H6zBT73ubMZvfljhYWXxohAbG0uHz48TdOD0JtvT33qMXq4Wz_Ob6u7h-nY-u6s6JpqhopK3TspWO2qmRDtXc8IbKevOCD1lVLNWaiY5by1z2pASLaPGWFHWa6hhx-h87Nun-LqzeVDruEuhjFRUgIBGArCiuhhVS72xygcXh6S7ckzZvovBOl_uZzXlICThdQHoCHQp5pysU33yW53eFQH17bwanVfFefXjvBIFYiOUizgsbfr7yz_UF8YBhuU</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Azpúrua, Héctor</creator><creator>Rezende, Adriano</creator><creator>Potje, Guilherme</creator><creator>Júnior, Gilmar Pereira da Cruz</creator><creator>Fernandes, Rafael</creator><creator>Miranda, Victor</creator><creator>Filho, Levi Welington de Resende</creator><creator>Domingues, Jacó</creator><creator>Rocha, Filipe</creator><creator>de Sousa, Frederico Luiz Martins</creator><creator>de Barros, Luiz Guilherme Dias</creator><creator>Nascimento, Erickson R.</creator><creator>Macharet, Douglas G.</creator><creator>Pessin, Gustavo</creator><creator>Freitas, Gustavo M.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4182-2540</orcidid></search><sort><creationdate>20210401</creationdate><title>Towards Semi-autonomous Robotic Inspection and Mapping in Confined Spaces with the EspeleoRobô</title><author>Azpúrua, Héctor ; Rezende, Adriano ; Potje, Guilherme ; Júnior, Gilmar Pereira da Cruz ; Fernandes, Rafael ; Miranda, Victor ; Filho, Levi Welington de Resende ; Domingues, Jacó ; Rocha, Filipe ; de Sousa, Frederico Luiz Martins ; de Barros, Luiz Guilherme Dias ; Nascimento, Erickson R. ; Macharet, Douglas G. ; Pessin, Gustavo ; Freitas, Gustavo M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-294bf99baf2d61aff74148997cd5a632a3b9a3944be3fad1111b32dde540982d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Confined spaces</topic><topic>Control</topic><topic>Electrical Engineering</topic><topic>Electronic devices</topic><topic>Engineering</topic><topic>Fields (mathematics)</topic><topic>Inspection</topic><topic>Localization</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Mobile devices</topic><topic>Optical radar</topic><topic>Optimization</topic><topic>Path planning</topic><topic>Regular Paper</topic><topic>Robotics</topic><topic>Robots</topic><topic>Simultaneous localization and mapping</topic><topic>Topical Collection on ICAR 2019 Special Issue</topic><topic>Tunnels</topic><topic>Underground caverns</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azpúrua, Héctor</creatorcontrib><creatorcontrib>Rezende, Adriano</creatorcontrib><creatorcontrib>Potje, Guilherme</creatorcontrib><creatorcontrib>Júnior, Gilmar Pereira da Cruz</creatorcontrib><creatorcontrib>Fernandes, Rafael</creatorcontrib><creatorcontrib>Miranda, Victor</creatorcontrib><creatorcontrib>Filho, Levi Welington de Resende</creatorcontrib><creatorcontrib>Domingues, Jacó</creatorcontrib><creatorcontrib>Rocha, Filipe</creatorcontrib><creatorcontrib>de Sousa, Frederico Luiz Martins</creatorcontrib><creatorcontrib>de Barros, Luiz Guilherme Dias</creatorcontrib><creatorcontrib>Nascimento, Erickson R.</creatorcontrib><creatorcontrib>Macharet, Douglas G.</creatorcontrib><creatorcontrib>Pessin, Gustavo</creatorcontrib><creatorcontrib>Freitas, Gustavo M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent &amp; robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azpúrua, Héctor</au><au>Rezende, Adriano</au><au>Potje, Guilherme</au><au>Júnior, Gilmar Pereira da Cruz</au><au>Fernandes, Rafael</au><au>Miranda, Victor</au><au>Filho, Levi Welington de Resende</au><au>Domingues, Jacó</au><au>Rocha, Filipe</au><au>de Sousa, Frederico Luiz Martins</au><au>de Barros, Luiz Guilherme Dias</au><au>Nascimento, Erickson R.</au><au>Macharet, Douglas G.</au><au>Pessin, Gustavo</au><au>Freitas, Gustavo M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Semi-autonomous Robotic Inspection and Mapping in Confined Spaces with the EspeleoRobô</atitle><jtitle>Journal of intelligent &amp; robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>101</volume><issue>4</issue><artnum>69</artnum><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>Autonomous mobile devices operating in confined environments, such as pipes, underground tunnel systems, and cave networks, face multiple open challenges from the robotics perspective. Those challenges, such as mobility, localization, and mapping in GPS denied scenarios, are receiving particular attention from the academy and industry. One example is the Brazilian mining company Vale S.A., which is employing a robot – EspeleoRobô (SpeleoRobot) – to access restricted and dangerous areas for human workers. The EspeleoRobô is a robot initially designed for natural cave inspection during teleoperated missions. It is now being used to monitor other types of confined environments, such as dam galleries and other restrained or dangerous areas. This paper describes the platform in its current version and the pipeline used for semi-autonomous inspection in confined environments. The pipeline includes photorealistic mapping techniques, Simultaneous Localization and Mapping (SLAM) with LiDAR, path planning based on mobility optimization, and navigation control using vector fields to reduce operator dependency of the robot operation. The proposed concept was validated in simulations with a realistic underground tunnel system and in representative real-world scenarios. The results endorse the viability of using the proposed concept for real deployments.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-021-01321-5</doi><orcidid>https://orcid.org/0000-0002-4182-2540</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-0296
ispartof Journal of intelligent & robotic systems, 2021-04, Vol.101 (4), Article 69
issn 0921-0296
1573-0409
language eng
recordid cdi_proquest_journals_2505089003
source Springer Nature - Complete Springer Journals
subjects Artificial Intelligence
Confined spaces
Control
Electrical Engineering
Electronic devices
Engineering
Fields (mathematics)
Inspection
Localization
Mechanical Engineering
Mechatronics
Mobile devices
Optical radar
Optimization
Path planning
Regular Paper
Robotics
Robots
Simultaneous localization and mapping
Topical Collection on ICAR 2019 Special Issue
Tunnels
Underground caverns
title Towards Semi-autonomous Robotic Inspection and Mapping in Confined Spaces with the EspeleoRobô
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Semi-autonomous%20Robotic%20Inspection%20and%20Mapping%20in%20Confined%20Spaces%20with%20the%20EspeleoRob%C3%B4&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Azp%C3%BArua,%20H%C3%A9ctor&rft.date=2021-04-01&rft.volume=101&rft.issue=4&rft.artnum=69&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-021-01321-5&rft_dat=%3Cgale_proqu%3EA724059147%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505089003&rft_id=info:pmid/&rft_galeid=A724059147&rfr_iscdi=true