High-performance energy storage of highly saturated ferromagnetic cobalt-doped cuprous oxide thin films

Pure and other concentrations of cobalt (Co 2+ ) ions incorporated into cuprous oxide Cu 2−x Co x O ( x  = 0–14 mM) thin films were successfully deposited in fluorine-doped tin oxide (FTO) glass substrate by employing electro deposition technique. The crystallite size of pure and Co-doped thin films...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2021-03, Vol.32 (6), p.7509-7527
Hauptverfasser: Ganesan, K. P., Amaliroselin, A., Joseph Panneer Doss, I., Anandhan, N., Ramesh, R., Prabhu, S., Sivakumar, G., Panneerselvam, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7527
container_issue 6
container_start_page 7509
container_title Journal of materials science. Materials in electronics
container_volume 32
creator Ganesan, K. P.
Amaliroselin, A.
Joseph Panneer Doss, I.
Anandhan, N.
Ramesh, R.
Prabhu, S.
Sivakumar, G.
Panneerselvam, R.
description Pure and other concentrations of cobalt (Co 2+ ) ions incorporated into cuprous oxide Cu 2−x Co x O ( x  = 0–14 mM) thin films were successfully deposited in fluorine-doped tin oxide (FTO) glass substrate by employing electro deposition technique. The crystallite size of pure and Co-doped thin films was investigated from 29.03 to 43.38 nm using X-ray diffraction (XRD) patterns. Scanning electron microscope (SEM) images display three-sided pyramid shape morphology of pure Cu 2 O thin films that get significantly changed, as and when Co concentrations get increased. The optical bandgap value gets continuously increased from 2.128 to 2.297 eV for a 0–14 mM change in Co doping concentration. Vibrating sample magnetometer (VSM) pictures the film that exhibits a better ferromagnetic property with a saturation magnetism of 159.96 E −6 emu for 14 mM Co dopant. X-ray photoelectron spectroscopy (XPS) confirm the presence of cobalt (Co 2+ ) as a dopant in the host Cu 2 O thin films. The Cu 2−86 Co 14 O ( x  = 14 mM) thin film has a higher specific capacitance of 164.90 F/g with 3.66 Wh/kg energy density at the current density of 2 A/g. It has a good energy and a power density in the higher concentration Co-doped Cu 2 O thin films applicable for energy storage devices.
doi_str_mv 10.1007/s10854-021-05463-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505088875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505088875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-887df89dfc26d0eeec889bce55000fae94e9d02a2ec4bb0857074e4299e6a6593</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPAU8R9M0aZOjLOoKC14UvIU0nXS7tM2atGD_vdEK3jwNzLyveQhdZ_Q2o7S8ixmVghPKMkIFL3Iyn6BVJsqccMneT9GKKlESLhg7RxcxHiilBc_lCjXbttmTIwTnQ28GCxgGCM2M4-iDaQB7h_cJ0qWNGadgRqixgxB8b5oBxtZi6yvTjaT2x3Sy0zH4KWL_2daAx307YNd2fbxEZ850Ea5-5xq9PT68brZk9_L0vLnfEZtnaiRSlrWTqnaWFTUFACulqiwIkRI7A4qDqikzDCyvqvRzSUsOnCkFhSmEytfoZtFNMT4miKM--CkMyVIzQQWVyUEkFFtQNvgYAzh9DG1vwqwzqr8L1UuhOhWqfwrVcyLlCykm8NBA-JP-h_UFwM570g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505088875</pqid></control><display><type>article</type><title>High-performance energy storage of highly saturated ferromagnetic cobalt-doped cuprous oxide thin films</title><source>SpringerNature Journals</source><creator>Ganesan, K. P. ; Amaliroselin, A. ; Joseph Panneer Doss, I. ; Anandhan, N. ; Ramesh, R. ; Prabhu, S. ; Sivakumar, G. ; Panneerselvam, R.</creator><creatorcontrib>Ganesan, K. P. ; Amaliroselin, A. ; Joseph Panneer Doss, I. ; Anandhan, N. ; Ramesh, R. ; Prabhu, S. ; Sivakumar, G. ; Panneerselvam, R.</creatorcontrib><description>Pure and other concentrations of cobalt (Co 2+ ) ions incorporated into cuprous oxide Cu 2−x Co x O ( x  = 0–14 mM) thin films were successfully deposited in fluorine-doped tin oxide (FTO) glass substrate by employing electro deposition technique. The crystallite size of pure and Co-doped thin films was investigated from 29.03 to 43.38 nm using X-ray diffraction (XRD) patterns. Scanning electron microscope (SEM) images display three-sided pyramid shape morphology of pure Cu 2 O thin films that get significantly changed, as and when Co concentrations get increased. The optical bandgap value gets continuously increased from 2.128 to 2.297 eV for a 0–14 mM change in Co doping concentration. Vibrating sample magnetometer (VSM) pictures the film that exhibits a better ferromagnetic property with a saturation magnetism of 159.96 E −6 emu for 14 mM Co dopant. X-ray photoelectron spectroscopy (XPS) confirm the presence of cobalt (Co 2+ ) as a dopant in the host Cu 2 O thin films. The Cu 2−86 Co 14 O ( x  = 14 mM) thin film has a higher specific capacitance of 164.90 F/g with 3.66 Wh/kg energy density at the current density of 2 A/g. It has a good energy and a power density in the higher concentration Co-doped Cu 2 O thin films applicable for energy storage devices.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-05463-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cobalt ; Copper oxides ; Crystallites ; Diffraction patterns ; Dopants ; Energy storage ; Ferromagnetic materials ; Fluorine ; Flux density ; Glass substrates ; Magnetic properties ; Magnetism ; Materials Science ; Morphology ; Optical and Electronic Materials ; Photoelectrons ; Thin films ; Tin oxides ; X ray photoelectron spectroscopy</subject><ispartof>Journal of materials science. Materials in electronics, 2021-03, Vol.32 (6), p.7509-7527</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-887df89dfc26d0eeec889bce55000fae94e9d02a2ec4bb0857074e4299e6a6593</citedby><cites>FETCH-LOGICAL-c319t-887df89dfc26d0eeec889bce55000fae94e9d02a2ec4bb0857074e4299e6a6593</cites><orcidid>0000-0001-6783-6337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-05463-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-05463-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ganesan, K. P.</creatorcontrib><creatorcontrib>Amaliroselin, A.</creatorcontrib><creatorcontrib>Joseph Panneer Doss, I.</creatorcontrib><creatorcontrib>Anandhan, N.</creatorcontrib><creatorcontrib>Ramesh, R.</creatorcontrib><creatorcontrib>Prabhu, S.</creatorcontrib><creatorcontrib>Sivakumar, G.</creatorcontrib><creatorcontrib>Panneerselvam, R.</creatorcontrib><title>High-performance energy storage of highly saturated ferromagnetic cobalt-doped cuprous oxide thin films</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Pure and other concentrations of cobalt (Co 2+ ) ions incorporated into cuprous oxide Cu 2−x Co x O ( x  = 0–14 mM) thin films were successfully deposited in fluorine-doped tin oxide (FTO) glass substrate by employing electro deposition technique. The crystallite size of pure and Co-doped thin films was investigated from 29.03 to 43.38 nm using X-ray diffraction (XRD) patterns. Scanning electron microscope (SEM) images display three-sided pyramid shape morphology of pure Cu 2 O thin films that get significantly changed, as and when Co concentrations get increased. The optical bandgap value gets continuously increased from 2.128 to 2.297 eV for a 0–14 mM change in Co doping concentration. Vibrating sample magnetometer (VSM) pictures the film that exhibits a better ferromagnetic property with a saturation magnetism of 159.96 E −6 emu for 14 mM Co dopant. X-ray photoelectron spectroscopy (XPS) confirm the presence of cobalt (Co 2+ ) as a dopant in the host Cu 2 O thin films. The Cu 2−86 Co 14 O ( x  = 14 mM) thin film has a higher specific capacitance of 164.90 F/g with 3.66 Wh/kg energy density at the current density of 2 A/g. It has a good energy and a power density in the higher concentration Co-doped Cu 2 O thin films applicable for energy storage devices.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt</subject><subject>Copper oxides</subject><subject>Crystallites</subject><subject>Diffraction patterns</subject><subject>Dopants</subject><subject>Energy storage</subject><subject>Ferromagnetic materials</subject><subject>Fluorine</subject><subject>Flux density</subject><subject>Glass substrates</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Optical and Electronic Materials</subject><subject>Photoelectrons</subject><subject>Thin films</subject><subject>Tin oxides</subject><subject>X ray photoelectron spectroscopy</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UE1LxDAQDaLguvoHPAU8R9M0aZOjLOoKC14UvIU0nXS7tM2atGD_vdEK3jwNzLyveQhdZ_Q2o7S8ixmVghPKMkIFL3Iyn6BVJsqccMneT9GKKlESLhg7RxcxHiilBc_lCjXbttmTIwTnQ28GCxgGCM2M4-iDaQB7h_cJ0qWNGadgRqixgxB8b5oBxtZi6yvTjaT2x3Sy0zH4KWL_2daAx307YNd2fbxEZ850Ea5-5xq9PT68brZk9_L0vLnfEZtnaiRSlrWTqnaWFTUFACulqiwIkRI7A4qDqikzDCyvqvRzSUsOnCkFhSmEytfoZtFNMT4miKM--CkMyVIzQQWVyUEkFFtQNvgYAzh9DG1vwqwzqr8L1UuhOhWqfwrVcyLlCykm8NBA-JP-h_UFwM570g</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Ganesan, K. P.</creator><creator>Amaliroselin, A.</creator><creator>Joseph Panneer Doss, I.</creator><creator>Anandhan, N.</creator><creator>Ramesh, R.</creator><creator>Prabhu, S.</creator><creator>Sivakumar, G.</creator><creator>Panneerselvam, R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-6783-6337</orcidid></search><sort><creationdate>20210301</creationdate><title>High-performance energy storage of highly saturated ferromagnetic cobalt-doped cuprous oxide thin films</title><author>Ganesan, K. P. ; Amaliroselin, A. ; Joseph Panneer Doss, I. ; Anandhan, N. ; Ramesh, R. ; Prabhu, S. ; Sivakumar, G. ; Panneerselvam, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-887df89dfc26d0eeec889bce55000fae94e9d02a2ec4bb0857074e4299e6a6593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt</topic><topic>Copper oxides</topic><topic>Crystallites</topic><topic>Diffraction patterns</topic><topic>Dopants</topic><topic>Energy storage</topic><topic>Ferromagnetic materials</topic><topic>Fluorine</topic><topic>Flux density</topic><topic>Glass substrates</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Optical and Electronic Materials</topic><topic>Photoelectrons</topic><topic>Thin films</topic><topic>Tin oxides</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganesan, K. P.</creatorcontrib><creatorcontrib>Amaliroselin, A.</creatorcontrib><creatorcontrib>Joseph Panneer Doss, I.</creatorcontrib><creatorcontrib>Anandhan, N.</creatorcontrib><creatorcontrib>Ramesh, R.</creatorcontrib><creatorcontrib>Prabhu, S.</creatorcontrib><creatorcontrib>Sivakumar, G.</creatorcontrib><creatorcontrib>Panneerselvam, R.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganesan, K. P.</au><au>Amaliroselin, A.</au><au>Joseph Panneer Doss, I.</au><au>Anandhan, N.</au><au>Ramesh, R.</au><au>Prabhu, S.</au><au>Sivakumar, G.</au><au>Panneerselvam, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance energy storage of highly saturated ferromagnetic cobalt-doped cuprous oxide thin films</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>32</volume><issue>6</issue><spage>7509</spage><epage>7527</epage><pages>7509-7527</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Pure and other concentrations of cobalt (Co 2+ ) ions incorporated into cuprous oxide Cu 2−x Co x O ( x  = 0–14 mM) thin films were successfully deposited in fluorine-doped tin oxide (FTO) glass substrate by employing electro deposition technique. The crystallite size of pure and Co-doped thin films was investigated from 29.03 to 43.38 nm using X-ray diffraction (XRD) patterns. Scanning electron microscope (SEM) images display three-sided pyramid shape morphology of pure Cu 2 O thin films that get significantly changed, as and when Co concentrations get increased. The optical bandgap value gets continuously increased from 2.128 to 2.297 eV for a 0–14 mM change in Co doping concentration. Vibrating sample magnetometer (VSM) pictures the film that exhibits a better ferromagnetic property with a saturation magnetism of 159.96 E −6 emu for 14 mM Co dopant. X-ray photoelectron spectroscopy (XPS) confirm the presence of cobalt (Co 2+ ) as a dopant in the host Cu 2 O thin films. The Cu 2−86 Co 14 O ( x  = 14 mM) thin film has a higher specific capacitance of 164.90 F/g with 3.66 Wh/kg energy density at the current density of 2 A/g. It has a good energy and a power density in the higher concentration Co-doped Cu 2 O thin films applicable for energy storage devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-05463-y</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6783-6337</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2021-03, Vol.32 (6), p.7509-7527
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2505088875
source SpringerNature Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Cobalt
Copper oxides
Crystallites
Diffraction patterns
Dopants
Energy storage
Ferromagnetic materials
Fluorine
Flux density
Glass substrates
Magnetic properties
Magnetism
Materials Science
Morphology
Optical and Electronic Materials
Photoelectrons
Thin films
Tin oxides
X ray photoelectron spectroscopy
title High-performance energy storage of highly saturated ferromagnetic cobalt-doped cuprous oxide thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20energy%20storage%20of%20highly%20saturated%20ferromagnetic%20cobalt-doped%20cuprous%20oxide%20thin%20films&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Ganesan,%20K.%20P.&rft.date=2021-03-01&rft.volume=32&rft.issue=6&rft.spage=7509&rft.epage=7527&rft.pages=7509-7527&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-05463-y&rft_dat=%3Cproquest_cross%3E2505088875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505088875&rft_id=info:pmid/&rfr_iscdi=true