Base Partition for Mixed Families of Finitary and Cofinitary Matroids

Let be a finite or infinite family consisting of matroids on a common ground set E each of which may be finitary or cofinitary. We prove the following Cantor-Bernstein-type result: If there is a collection of bases, one for each M i , which covers the set E , and also a collection of bases which are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorica (Budapest. 1981) 2021-02, Vol.41 (1), p.31-52
Hauptverfasser: Erde, Joshua, Gollin, J. Pascal, Joó, Attila, Knappe, Paul, Pitz, Max
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52
container_issue 1
container_start_page 31
container_title Combinatorica (Budapest. 1981)
container_volume 41
creator Erde, Joshua
Gollin, J. Pascal
Joó, Attila
Knappe, Paul
Pitz, Max
description Let be a finite or infinite family consisting of matroids on a common ground set E each of which may be finitary or cofinitary. We prove the following Cantor-Bernstein-type result: If there is a collection of bases, one for each M i , which covers the set E , and also a collection of bases which are pairwise disjoint, then there is a collection of bases which partition E. We also show that the failure of this Cantor-Bernstein-type statement for arbitrary matroid families is consistent relative to the axioms of set theory ZFC.
doi_str_mv 10.1007/s00493-020-4422-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2504839529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A719028908</galeid><sourcerecordid>A719028908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-7d066a435573c20d3eb01cff9646666090967357b6bbe4fc567db3ba1c8ad3ce3</originalsourceid><addsrcrecordid>eNp1kE1PAyEQhonRxFr9Ad428UwdPpZdjrVp1USjBz0Tlo-Gpl0qbBP999KsxpNwYJh53xl4ELomMCMAzW0G4JJhoIA5pxTzEzQhnEksJKGnaFIKEkvRsnN0kfMGAFpG6gla3unsqledhjCE2Fc-puo5fDpbrfQubIPLVfTVKvRh0Omr0r2tFtH_Xp_1kGKw-RKdeb3N7urnnKL31fJt8YCfXu4fF_MnbFhdD7ixIITmJW6YoWCZ64AY76XgoiyQIEXD6qYTXee4N7VobMc6TUyrLTOOTdHN2Hef4sfB5UFt4iH1ZaSiNfCWyZrKopqNqrXeOhV6H4ekTdnW7YKJvfOh5OcNkUBbWUBMERkNJsWck_Nqn8KufFARUEe8asSrCkV1xKt48dDRk4u2X7v095T_Td80_Xt6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504839529</pqid></control><display><type>article</type><title>Base Partition for Mixed Families of Finitary and Cofinitary Matroids</title><source>SpringerLink Journals - AutoHoldings</source><creator>Erde, Joshua ; Gollin, J. Pascal ; Joó, Attila ; Knappe, Paul ; Pitz, Max</creator><creatorcontrib>Erde, Joshua ; Gollin, J. Pascal ; Joó, Attila ; Knappe, Paul ; Pitz, Max</creatorcontrib><description>Let be a finite or infinite family consisting of matroids on a common ground set E each of which may be finitary or cofinitary. We prove the following Cantor-Bernstein-type result: If there is a collection of bases, one for each M i , which covers the set E , and also a collection of bases which are pairwise disjoint, then there is a collection of bases which partition E. We also show that the failure of this Cantor-Bernstein-type statement for arbitrary matroid families is consistent relative to the axioms of set theory ZFC.</description><identifier>ISSN: 0209-9683</identifier><identifier>EISSN: 1439-6912</identifier><identifier>DOI: 10.1007/s00493-020-4422-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Axioms ; Collection ; Combinatorics ; Family ; Mathematics ; Mathematics and Statistics ; Matrix partitioning ; Original Paper ; Set theory</subject><ispartof>Combinatorica (Budapest. 1981), 2021-02, Vol.41 (1), p.31-52</ispartof><rights>János Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>János Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-7d066a435573c20d3eb01cff9646666090967357b6bbe4fc567db3ba1c8ad3ce3</citedby><cites>FETCH-LOGICAL-c355t-7d066a435573c20d3eb01cff9646666090967357b6bbe4fc567db3ba1c8ad3ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00493-020-4422-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00493-020-4422-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Erde, Joshua</creatorcontrib><creatorcontrib>Gollin, J. Pascal</creatorcontrib><creatorcontrib>Joó, Attila</creatorcontrib><creatorcontrib>Knappe, Paul</creatorcontrib><creatorcontrib>Pitz, Max</creatorcontrib><title>Base Partition for Mixed Families of Finitary and Cofinitary Matroids</title><title>Combinatorica (Budapest. 1981)</title><addtitle>Combinatorica</addtitle><description>Let be a finite or infinite family consisting of matroids on a common ground set E each of which may be finitary or cofinitary. We prove the following Cantor-Bernstein-type result: If there is a collection of bases, one for each M i , which covers the set E , and also a collection of bases which are pairwise disjoint, then there is a collection of bases which partition E. We also show that the failure of this Cantor-Bernstein-type statement for arbitrary matroid families is consistent relative to the axioms of set theory ZFC.</description><subject>Axioms</subject><subject>Collection</subject><subject>Combinatorics</subject><subject>Family</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix partitioning</subject><subject>Original Paper</subject><subject>Set theory</subject><issn>0209-9683</issn><issn>1439-6912</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PAyEQhonRxFr9Ad428UwdPpZdjrVp1USjBz0Tlo-Gpl0qbBP999KsxpNwYJh53xl4ELomMCMAzW0G4JJhoIA5pxTzEzQhnEksJKGnaFIKEkvRsnN0kfMGAFpG6gla3unsqledhjCE2Fc-puo5fDpbrfQubIPLVfTVKvRh0Omr0r2tFtH_Xp_1kGKw-RKdeb3N7urnnKL31fJt8YCfXu4fF_MnbFhdD7ixIITmJW6YoWCZ64AY76XgoiyQIEXD6qYTXee4N7VobMc6TUyrLTOOTdHN2Hef4sfB5UFt4iH1ZaSiNfCWyZrKopqNqrXeOhV6H4ekTdnW7YKJvfOh5OcNkUBbWUBMERkNJsWck_Nqn8KufFARUEe8asSrCkV1xKt48dDRk4u2X7v095T_Td80_Xt6</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Erde, Joshua</creator><creator>Gollin, J. Pascal</creator><creator>Joó, Attila</creator><creator>Knappe, Paul</creator><creator>Pitz, Max</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210201</creationdate><title>Base Partition for Mixed Families of Finitary and Cofinitary Matroids</title><author>Erde, Joshua ; Gollin, J. Pascal ; Joó, Attila ; Knappe, Paul ; Pitz, Max</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-7d066a435573c20d3eb01cff9646666090967357b6bbe4fc567db3ba1c8ad3ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Axioms</topic><topic>Collection</topic><topic>Combinatorics</topic><topic>Family</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix partitioning</topic><topic>Original Paper</topic><topic>Set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erde, Joshua</creatorcontrib><creatorcontrib>Gollin, J. Pascal</creatorcontrib><creatorcontrib>Joó, Attila</creatorcontrib><creatorcontrib>Knappe, Paul</creatorcontrib><creatorcontrib>Pitz, Max</creatorcontrib><collection>CrossRef</collection><jtitle>Combinatorica (Budapest. 1981)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erde, Joshua</au><au>Gollin, J. Pascal</au><au>Joó, Attila</au><au>Knappe, Paul</au><au>Pitz, Max</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Base Partition for Mixed Families of Finitary and Cofinitary Matroids</atitle><jtitle>Combinatorica (Budapest. 1981)</jtitle><stitle>Combinatorica</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>41</volume><issue>1</issue><spage>31</spage><epage>52</epage><pages>31-52</pages><issn>0209-9683</issn><eissn>1439-6912</eissn><abstract>Let be a finite or infinite family consisting of matroids on a common ground set E each of which may be finitary or cofinitary. We prove the following Cantor-Bernstein-type result: If there is a collection of bases, one for each M i , which covers the set E , and also a collection of bases which are pairwise disjoint, then there is a collection of bases which partition E. We also show that the failure of this Cantor-Bernstein-type statement for arbitrary matroid families is consistent relative to the axioms of set theory ZFC.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00493-020-4422-4</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0209-9683
ispartof Combinatorica (Budapest. 1981), 2021-02, Vol.41 (1), p.31-52
issn 0209-9683
1439-6912
language eng
recordid cdi_proquest_journals_2504839529
source SpringerLink Journals - AutoHoldings
subjects Axioms
Collection
Combinatorics
Family
Mathematics
Mathematics and Statistics
Matrix partitioning
Original Paper
Set theory
title Base Partition for Mixed Families of Finitary and Cofinitary Matroids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A04%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Base%20Partition%20for%20Mixed%20Families%20of%20Finitary%20and%20Cofinitary%20Matroids&rft.jtitle=Combinatorica%20(Budapest.%201981)&rft.au=Erde,%20Joshua&rft.date=2021-02-01&rft.volume=41&rft.issue=1&rft.spage=31&rft.epage=52&rft.pages=31-52&rft.issn=0209-9683&rft.eissn=1439-6912&rft_id=info:doi/10.1007/s00493-020-4422-4&rft_dat=%3Cgale_proqu%3EA719028908%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2504839529&rft_id=info:pmid/&rft_galeid=A719028908&rfr_iscdi=true