Base Partition for Mixed Families of Finitary and Cofinitary Matroids

Let be a finite or infinite family consisting of matroids on a common ground set E each of which may be finitary or cofinitary. We prove the following Cantor-Bernstein-type result: If there is a collection of bases, one for each M i , which covers the set E , and also a collection of bases which are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorica (Budapest. 1981) 2021-02, Vol.41 (1), p.31-52
Hauptverfasser: Erde, Joshua, Gollin, J. Pascal, Joó, Attila, Knappe, Paul, Pitz, Max
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let be a finite or infinite family consisting of matroids on a common ground set E each of which may be finitary or cofinitary. We prove the following Cantor-Bernstein-type result: If there is a collection of bases, one for each M i , which covers the set E , and also a collection of bases which are pairwise disjoint, then there is a collection of bases which partition E. We also show that the failure of this Cantor-Bernstein-type statement for arbitrary matroid families is consistent relative to the axioms of set theory ZFC.
ISSN:0209-9683
1439-6912
DOI:10.1007/s00493-020-4422-4