Asymptotic preserving trigonometric integrators for the quantum Zakharov system
We present a new class of asymptotic preserving trigonometric integrators for the quantum Zakharov system. Their convergence holds in the strong quantum regime ϑ = 1 as well as in the classical regime ϑ → 0 without imposing any step size restrictions. Moreover, the new schemes are asymptotic preserv...
Gespeichert in:
Veröffentlicht in: | BIT 2021-03, Vol.61 (1), p.61-81 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a new class of asymptotic preserving trigonometric integrators for the quantum Zakharov system. Their convergence holds in the strong quantum regime
ϑ
=
1
as well as in the classical regime
ϑ
→
0
without imposing any step size restrictions. Moreover, the new schemes are asymptotic preserving and converge to the classical Zakharov system in the limit
ϑ
→
0
uniformly in the time discretization parameter. Numerical experiments underline the favorable error behavior of the new schemes with first- and second-order time convergence uniformly in
ϑ
, first-order asymptotic convergence in
ϑ
and long time structure preservation properties. |
---|---|
ISSN: | 0006-3835 1572-9125 |
DOI: | 10.1007/s10543-020-00815-2 |