Asymptotic preserving trigonometric integrators for the quantum Zakharov system

We present a new class of asymptotic preserving trigonometric integrators for the quantum Zakharov system. Their convergence holds in the strong quantum regime ϑ = 1 as well as in the classical regime ϑ → 0 without imposing any step size restrictions. Moreover, the new schemes are asymptotic preserv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BIT 2021-03, Vol.61 (1), p.61-81
Hauptverfasser: Baumstark, Simon, Schratz, Katharina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new class of asymptotic preserving trigonometric integrators for the quantum Zakharov system. Their convergence holds in the strong quantum regime ϑ = 1 as well as in the classical regime ϑ → 0 without imposing any step size restrictions. Moreover, the new schemes are asymptotic preserving and converge to the classical Zakharov system in the limit ϑ → 0 uniformly in the time discretization parameter. Numerical experiments underline the favorable error behavior of the new schemes with first- and second-order time convergence uniformly in ϑ , first-order asymptotic convergence in ϑ and long time structure preservation properties.
ISSN:0006-3835
1572-9125
DOI:10.1007/s10543-020-00815-2