Shock detachment and drag in hypersonic flow over wedges and circular cylinders
In a recent publication, Hornung et al. (J. Fluid Mech., vol. 871, 2019, pp. 1097–1116) showed that the shock wave stand-off distance and the drag coefficient of a cone in the inviscid hypersonic flow of a perfect gas can be expressed as the product of a function of the inverse normal-shock density...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2021-03, Vol.915, Article A100 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a recent publication, Hornung et al. (J. Fluid Mech., vol. 871, 2019, pp. 1097–1116) showed that the shock wave stand-off distance and the drag coefficient of a cone in the inviscid hypersonic flow of a perfect gas can be expressed as the product of a function of the inverse normal-shock density ratio $\varepsilon$ and a function of the cone-angle parameter $\eta$, thus reducing the number of independent parameters from three (Mach number, specific heat ratio and angle) to two. Analytical forms of the functions were obtained by performing a large number of Euler computations. In this article, the same approach is applied to a symmetrical flow over a wedge. It is shown that the same simplification applies and corresponding analytical forms of the functions are obtained. The functions of $\varepsilon$ are compared with the newly determined corresponding functions for flow over a circular cylinder. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2021.187 |