Large friction-high force fields limit for the nonlinear Vlasov--Poisson--Fokker--Planck system

We provide a quantitative asymptotic analysis for the nonlinear Vlasov--Poisson--Fokker--Planck system with a large linear friction force and high force-fields. The limiting system is a diffusive model with nonlocal velocity fields often referred to as aggregation-diffusion equations. We show that a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-03
Hauptverfasser: Carrillo, José A, Young-Pil, Choi, Peng, Yingping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide a quantitative asymptotic analysis for the nonlinear Vlasov--Poisson--Fokker--Planck system with a large linear friction force and high force-fields. The limiting system is a diffusive model with nonlocal velocity fields often referred to as aggregation-diffusion equations. We show that a weak solution to the Vlasov--Poisson--Fokker--Planck system strongly converges to a strong solution to the diffusive model. Our proof relies on the modulated macroscopic kinetic energy estimate based on the weak-strong uniqueness principle together with a careful analysis of the Poisson equation.
ISSN:2331-8422