Fair Adaptive Cross-Layer Resource Allocation Scheme for IEEE 802.16 Broadband Wireless Networks
In a WiMAX network, the Medium Access Control (MAC) protocol deals with resource allocation to different types of traffic. The key components that ensure Quality of Service (QoS) guarantees in a WiMAX network include Call Admission Control (CAC), Bandwidth and Burst allocation. In this Paper, a Cros...
Gespeichert in:
Veröffentlicht in: | Wireless personal communications 2021-04, Vol.117 (4), p.2645-2666 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a WiMAX network, the Medium Access Control (MAC) protocol deals with resource allocation to different types of traffic. The key components that ensure Quality of Service (QoS) guarantees in a WiMAX network include Call Admission Control (CAC), Bandwidth and Burst allocation. In this Paper, a Cross-layer framework is designed to efficiently allocate resources to various classes of traffic. CAC and Bandwidth allocation are dealt in the MAC layer, while Burst allocation in the PHYsical layer. The predominant goal of this work is to reduce delay and Information Element (IE) overheads by efficiently utilizing the available frame space. The History based CAC (HCAC) proposed in this paper deals with call acceptance based on the Contention Window (CW) values. The History based Bandwidth Allocation (HBA) scheme deals with allocating bandwidth based on Consumption and Equity measures. The proposed tightly coupled Delay Tolerance based Scheduler (DTS) and Bucket based Burst Allocator (BBA) allocate resources by prioritizing flows with least delay tolerance. It is seen that the proposed schemes offer better performance in contrast to the existing benchmarked schemes in terms of Throughput, Average Delay and Packet Loss Ratio (PLR). |
---|---|
ISSN: | 0929-6212 1572-834X |
DOI: | 10.1007/s11277-019-06929-3 |