Web Based Cross Layer Optimization Technique for Energy Efficient WSN

In recent days, wireless sensor networks (WSN) plays a major role in the real time applications like military battlefield surveillance, industrial process monitoring, machine health monitoring and so on. In WSN, selecting the cluster head (CH) is the challenging task. CH selection is done by conside...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless personal communications 2021-04, Vol.117 (4), p.2781-2792
Hauptverfasser: Chandravathi, C., Mahadevan, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent days, wireless sensor networks (WSN) plays a major role in the real time applications like military battlefield surveillance, industrial process monitoring, machine health monitoring and so on. In WSN, selecting the cluster head (CH) is the challenging task. CH selection is done by considering parameters of single layer only. In cross layer protocol more than one layers are considered for inter related parameters such as integration of MAC/physical layer and integration routing/MAC/physical layers. The main drawback of layer-based approach is not considering the effect on improvement of particular layer parameter to other layer parameters. In this paper, new cross layer technique for energy efficient module is designed to address the energy efficiency issues, which is common to all layers and used to optimize the energy from one layer parameter by others. Nowadays everything is possible with the help of Internet, so sharing the information between WSN and TCP through the energy efficient cross layer can be done. It is done with transport layer to enhance the application filed to be reliably connected to the web. In this paper, dynamically adapted sleep scheduling mechanism is used with residual energy of each node. Virtual end-to-end packet rate selection and congestion control feedback mechanism are considered for end to end delay. This reduces the packet loss with the support of data-rate adaptation technique.
ISSN:0929-6212
1572-834X
DOI:10.1007/s11277-020-07047-1