All-in-one theranostic nanoplatform with controlled drug release and activated MRI tracking functions for synergistic NIR-II hyperthermia-chemotherapy of tumors

Real-time tracking drug release behavior is fundamentally important for avoiding adverse effects or unsuccessful treatment in personalize medical treatment. However, the development of a non-invasive drug reporting platform still remains challenging. Herein the design of a novel synthetic magnetic r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2019-12, Vol.12 (12), p.2971-2981
Hauptverfasser: Ding, Xianguang, Zhao, Haitao, Li, Chunyan, Wang, Qiangbin, Jiang, Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Real-time tracking drug release behavior is fundamentally important for avoiding adverse effects or unsuccessful treatment in personalize medical treatment. However, the development of a non-invasive drug reporting platform still remains challenging. Herein the design of a novel synthetic magnetic resonance imaging (MRI) agent for drug release tracking (SMART) is reported, which integrates photothermal core and paramagnetic ion/drug loading shell with a thermal valve in a hybrid structure. Through near-infrared (NIR)-II photothermal effect originating from inner Au-Cu 9 S 5 nanohybrid core, burst release of drugs loaded in the mesoporous silica shell is achieved. The concomitant use of a phase change material not only prevents premature drug release, but also regulates heating effect, keeping local temperature below 45 °C, enabling synergistic chemotherapy and mild hyperthermia in vitro and in vivo. Furthermore, the drug release from SMART facilitates proton accessibility to the paramagnetic ions anchored inside mesopores channels, enhancing longitudinal T 1 relaxation rate and displaying positive signal correlation to the amount of released drug, thus allowing non-invasive real-time monitoring of drug release event. The current study highlights the potential of designed MRI nanophores such as SMART for real-time and in-situ monitoring of drug delivery for precision theranostic applications.
ISSN:1998-0124
1998-0000
DOI:10.1007/s12274-019-2540-3