Processing thin but robust electrolytes for solid-state batteries
The widespread adoption of high-energy-density solid-state batteries (SSBs) requires cost-effective processing and the integration of solid electrolytes of about the same thickness as the polymer-membrane separators found in conventional lithium-ion batteries. In this Review, we critically discuss t...
Gespeichert in:
Veröffentlicht in: | Nature energy 2021-03, Vol.6 (3), p.227-239 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 239 |
---|---|
container_issue | 3 |
container_start_page | 227 |
container_title | Nature energy |
container_volume | 6 |
creator | Balaish, Moran Gonzalez-Rosillo, Juan Carlos Kim, Kun Joong Zhu, Yuntong Hood, Zachary D. Rupp, Jennifer L. M. |
description | The widespread adoption of high-energy-density solid-state batteries (SSBs) requires cost-effective processing and the integration of solid electrolytes of about the same thickness as the polymer-membrane separators found in conventional lithium-ion batteries. In this Review, we critically discuss the current status of research on SSB processing as well as recent cost calculations, and compare SSB oxide electrolyte material and processing options in terms of performance parameters for thick versus thin ceramics. We identify as critical for future SSB design the need to capture the thermal processing budget and the stability of the phase of interest for oxide solid electrolytes, namely lithium phosphorus oxynitride, sodium superionic conductors, perovskites and garnets, in addition to the classic plots of Arrhenius lithium transport and the electrochemical stability window. Transitioning to SSB oxide electrolyte films with thicknesses close to the range for lithium-ion battery separators could provide ample opportunities for low-temperature ceramic manufacture and potential cost reduction.
High-performance solid-state electrolytes are key to enabling solid-state batteries that hold great promise for future energy storage. The authors survey the fabrication process of thin-film versus thick oxide-based solid-state electrolytes and discuss their material design and processing options. |
doi_str_mv | 10.1038/s41560-020-00759-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503525572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503525572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-9f6348360458a48a30c0f1431174a56e104b56f5fb1e6fe71ba70a42f338a02c3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EElXpH2CKxBw4f5zjjlXFR6VKMMBsOcEuqUJcfM7Qf08gSDAxnO6G531Pehi75HDNQZobUhw1lCDGgQqXJZ6wmQA0ZYVKn_65z9mCaA8AYikEGj5jq6cUG0_U9rsiv7V9UQ-5SLEeKBe-801OsTtmT0WIqaDYta8lZZd9UbucfWo9XbCz4Dryi589Zy93t8_rh3L7eL9Zr7ZlIw3mchm0VEZqUGicMk5CA4EryXmlHGrPQdWoA4aaex18xWtXgVMiSGkciEbO2dXUe0jxY_CU7T4OqR9fWoEgUSBWYqTERDUpEiUf7CG17y4dLQf7ZctOtuxoy37bsjiG5BSiEe53Pv1W_5P6BGcca-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503525572</pqid></control><display><type>article</type><title>Processing thin but robust electrolytes for solid-state batteries</title><source>Alma/SFX Local Collection</source><creator>Balaish, Moran ; Gonzalez-Rosillo, Juan Carlos ; Kim, Kun Joong ; Zhu, Yuntong ; Hood, Zachary D. ; Rupp, Jennifer L. M.</creator><creatorcontrib>Balaish, Moran ; Gonzalez-Rosillo, Juan Carlos ; Kim, Kun Joong ; Zhu, Yuntong ; Hood, Zachary D. ; Rupp, Jennifer L. M.</creatorcontrib><description>The widespread adoption of high-energy-density solid-state batteries (SSBs) requires cost-effective processing and the integration of solid electrolytes of about the same thickness as the polymer-membrane separators found in conventional lithium-ion batteries. In this Review, we critically discuss the current status of research on SSB processing as well as recent cost calculations, and compare SSB oxide electrolyte material and processing options in terms of performance parameters for thick versus thin ceramics. We identify as critical for future SSB design the need to capture the thermal processing budget and the stability of the phase of interest for oxide solid electrolytes, namely lithium phosphorus oxynitride, sodium superionic conductors, perovskites and garnets, in addition to the classic plots of Arrhenius lithium transport and the electrochemical stability window. Transitioning to SSB oxide electrolyte films with thicknesses close to the range for lithium-ion battery separators could provide ample opportunities for low-temperature ceramic manufacture and potential cost reduction.
High-performance solid-state electrolytes are key to enabling solid-state batteries that hold great promise for future energy storage. The authors survey the fabrication process of thin-film versus thick oxide-based solid-state electrolytes and discuss their material design and processing options.</description><identifier>ISSN: 2058-7546</identifier><identifier>EISSN: 2058-7546</identifier><identifier>DOI: 10.1038/s41560-020-00759-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299 ; 639/4077/4079/891 ; 639/638/161 ; Conductors ; Economics and Management ; Electrochemistry ; Electrolytes ; Energy ; Energy Policy ; Energy Storage ; Energy Systems ; Fabrication ; Garnets ; Lithium ; Lithium-ion batteries ; Low temperature ; Molten salt electrolytes ; Parameter identification ; Perovskites ; Phosphorus ; Polymers ; Rechargeable batteries ; Renewable and Green Energy ; Review Article ; Separators ; Solid electrolytes ; Solid state ; Stability ; Storage batteries ; Thickness ; Thin films</subject><ispartof>Nature energy, 2021-03, Vol.6 (3), p.227-239</ispartof><rights>Springer Nature Limited 2021</rights><rights>Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-9f6348360458a48a30c0f1431174a56e104b56f5fb1e6fe71ba70a42f338a02c3</citedby><cites>FETCH-LOGICAL-c385t-9f6348360458a48a30c0f1431174a56e104b56f5fb1e6fe71ba70a42f338a02c3</cites><orcidid>0000-0002-4744-8764 ; 0000-0002-3061-9889 ; 0000-0001-7160-0108 ; 0000-0001-6017-174X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Balaish, Moran</creatorcontrib><creatorcontrib>Gonzalez-Rosillo, Juan Carlos</creatorcontrib><creatorcontrib>Kim, Kun Joong</creatorcontrib><creatorcontrib>Zhu, Yuntong</creatorcontrib><creatorcontrib>Hood, Zachary D.</creatorcontrib><creatorcontrib>Rupp, Jennifer L. M.</creatorcontrib><title>Processing thin but robust electrolytes for solid-state batteries</title><title>Nature energy</title><addtitle>Nat Energy</addtitle><description>The widespread adoption of high-energy-density solid-state batteries (SSBs) requires cost-effective processing and the integration of solid electrolytes of about the same thickness as the polymer-membrane separators found in conventional lithium-ion batteries. In this Review, we critically discuss the current status of research on SSB processing as well as recent cost calculations, and compare SSB oxide electrolyte material and processing options in terms of performance parameters for thick versus thin ceramics. We identify as critical for future SSB design the need to capture the thermal processing budget and the stability of the phase of interest for oxide solid electrolytes, namely lithium phosphorus oxynitride, sodium superionic conductors, perovskites and garnets, in addition to the classic plots of Arrhenius lithium transport and the electrochemical stability window. Transitioning to SSB oxide electrolyte films with thicknesses close to the range for lithium-ion battery separators could provide ample opportunities for low-temperature ceramic manufacture and potential cost reduction.
High-performance solid-state electrolytes are key to enabling solid-state batteries that hold great promise for future energy storage. The authors survey the fabrication process of thin-film versus thick oxide-based solid-state electrolytes and discuss their material design and processing options.</description><subject>639/301/299</subject><subject>639/4077/4079/891</subject><subject>639/638/161</subject><subject>Conductors</subject><subject>Economics and Management</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Energy Policy</subject><subject>Energy Storage</subject><subject>Energy Systems</subject><subject>Fabrication</subject><subject>Garnets</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Low temperature</subject><subject>Molten salt electrolytes</subject><subject>Parameter identification</subject><subject>Perovskites</subject><subject>Phosphorus</subject><subject>Polymers</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><subject>Review Article</subject><subject>Separators</subject><subject>Solid electrolytes</subject><subject>Solid state</subject><subject>Stability</subject><subject>Storage batteries</subject><subject>Thickness</subject><subject>Thin films</subject><issn>2058-7546</issn><issn>2058-7546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAQhi0EElXpH2CKxBw4f5zjjlXFR6VKMMBsOcEuqUJcfM7Qf08gSDAxnO6G531Pehi75HDNQZobUhw1lCDGgQqXJZ6wmQA0ZYVKn_65z9mCaA8AYikEGj5jq6cUG0_U9rsiv7V9UQ-5SLEeKBe-801OsTtmT0WIqaDYta8lZZd9UbucfWo9XbCz4Dryi589Zy93t8_rh3L7eL9Zr7ZlIw3mchm0VEZqUGicMk5CA4EryXmlHGrPQdWoA4aaex18xWtXgVMiSGkciEbO2dXUe0jxY_CU7T4OqR9fWoEgUSBWYqTERDUpEiUf7CG17y4dLQf7ZctOtuxoy37bsjiG5BSiEe53Pv1W_5P6BGcca-I</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Balaish, Moran</creator><creator>Gonzalez-Rosillo, Juan Carlos</creator><creator>Kim, Kun Joong</creator><creator>Zhu, Yuntong</creator><creator>Hood, Zachary D.</creator><creator>Rupp, Jennifer L. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4744-8764</orcidid><orcidid>https://orcid.org/0000-0002-3061-9889</orcidid><orcidid>https://orcid.org/0000-0001-7160-0108</orcidid><orcidid>https://orcid.org/0000-0001-6017-174X</orcidid></search><sort><creationdate>20210301</creationdate><title>Processing thin but robust electrolytes for solid-state batteries</title><author>Balaish, Moran ; Gonzalez-Rosillo, Juan Carlos ; Kim, Kun Joong ; Zhu, Yuntong ; Hood, Zachary D. ; Rupp, Jennifer L. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-9f6348360458a48a30c0f1431174a56e104b56f5fb1e6fe71ba70a42f338a02c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/299</topic><topic>639/4077/4079/891</topic><topic>639/638/161</topic><topic>Conductors</topic><topic>Economics and Management</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Energy Policy</topic><topic>Energy Storage</topic><topic>Energy Systems</topic><topic>Fabrication</topic><topic>Garnets</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Low temperature</topic><topic>Molten salt electrolytes</topic><topic>Parameter identification</topic><topic>Perovskites</topic><topic>Phosphorus</topic><topic>Polymers</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><topic>Review Article</topic><topic>Separators</topic><topic>Solid electrolytes</topic><topic>Solid state</topic><topic>Stability</topic><topic>Storage batteries</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balaish, Moran</creatorcontrib><creatorcontrib>Gonzalez-Rosillo, Juan Carlos</creatorcontrib><creatorcontrib>Kim, Kun Joong</creatorcontrib><creatorcontrib>Zhu, Yuntong</creatorcontrib><creatorcontrib>Hood, Zachary D.</creatorcontrib><creatorcontrib>Rupp, Jennifer L. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balaish, Moran</au><au>Gonzalez-Rosillo, Juan Carlos</au><au>Kim, Kun Joong</au><au>Zhu, Yuntong</au><au>Hood, Zachary D.</au><au>Rupp, Jennifer L. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Processing thin but robust electrolytes for solid-state batteries</atitle><jtitle>Nature energy</jtitle><stitle>Nat Energy</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>6</volume><issue>3</issue><spage>227</spage><epage>239</epage><pages>227-239</pages><issn>2058-7546</issn><eissn>2058-7546</eissn><abstract>The widespread adoption of high-energy-density solid-state batteries (SSBs) requires cost-effective processing and the integration of solid electrolytes of about the same thickness as the polymer-membrane separators found in conventional lithium-ion batteries. In this Review, we critically discuss the current status of research on SSB processing as well as recent cost calculations, and compare SSB oxide electrolyte material and processing options in terms of performance parameters for thick versus thin ceramics. We identify as critical for future SSB design the need to capture the thermal processing budget and the stability of the phase of interest for oxide solid electrolytes, namely lithium phosphorus oxynitride, sodium superionic conductors, perovskites and garnets, in addition to the classic plots of Arrhenius lithium transport and the electrochemical stability window. Transitioning to SSB oxide electrolyte films with thicknesses close to the range for lithium-ion battery separators could provide ample opportunities for low-temperature ceramic manufacture and potential cost reduction.
High-performance solid-state electrolytes are key to enabling solid-state batteries that hold great promise for future energy storage. The authors survey the fabrication process of thin-film versus thick oxide-based solid-state electrolytes and discuss their material design and processing options.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41560-020-00759-5</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4744-8764</orcidid><orcidid>https://orcid.org/0000-0002-3061-9889</orcidid><orcidid>https://orcid.org/0000-0001-7160-0108</orcidid><orcidid>https://orcid.org/0000-0001-6017-174X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-7546 |
ispartof | Nature energy, 2021-03, Vol.6 (3), p.227-239 |
issn | 2058-7546 2058-7546 |
language | eng |
recordid | cdi_proquest_journals_2503525572 |
source | Alma/SFX Local Collection |
subjects | 639/301/299 639/4077/4079/891 639/638/161 Conductors Economics and Management Electrochemistry Electrolytes Energy Energy Policy Energy Storage Energy Systems Fabrication Garnets Lithium Lithium-ion batteries Low temperature Molten salt electrolytes Parameter identification Perovskites Phosphorus Polymers Rechargeable batteries Renewable and Green Energy Review Article Separators Solid electrolytes Solid state Stability Storage batteries Thickness Thin films |
title | Processing thin but robust electrolytes for solid-state batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Processing%20thin%20but%20robust%20electrolytes%20for%20solid-state%20batteries&rft.jtitle=Nature%20energy&rft.au=Balaish,%20Moran&rft.date=2021-03-01&rft.volume=6&rft.issue=3&rft.spage=227&rft.epage=239&rft.pages=227-239&rft.issn=2058-7546&rft.eissn=2058-7546&rft_id=info:doi/10.1038/s41560-020-00759-5&rft_dat=%3Cproquest_cross%3E2503525572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503525572&rft_id=info:pmid/&rfr_iscdi=true |