Processing thin but robust electrolytes for solid-state batteries

The widespread adoption of high-energy-density solid-state batteries (SSBs) requires cost-effective processing and the integration of solid electrolytes of about the same thickness as the polymer-membrane separators found in conventional lithium-ion batteries. In this Review, we critically discuss t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature energy 2021-03, Vol.6 (3), p.227-239
Hauptverfasser: Balaish, Moran, Gonzalez-Rosillo, Juan Carlos, Kim, Kun Joong, Zhu, Yuntong, Hood, Zachary D., Rupp, Jennifer L. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 239
container_issue 3
container_start_page 227
container_title Nature energy
container_volume 6
creator Balaish, Moran
Gonzalez-Rosillo, Juan Carlos
Kim, Kun Joong
Zhu, Yuntong
Hood, Zachary D.
Rupp, Jennifer L. M.
description The widespread adoption of high-energy-density solid-state batteries (SSBs) requires cost-effective processing and the integration of solid electrolytes of about the same thickness as the polymer-membrane separators found in conventional lithium-ion batteries. In this Review, we critically discuss the current status of research on SSB processing as well as recent cost calculations, and compare SSB oxide electrolyte material and processing options in terms of performance parameters for thick versus thin ceramics. We identify as critical for future SSB design the need to capture the thermal processing budget and the stability of the phase of interest for oxide solid electrolytes, namely lithium phosphorus oxynitride, sodium superionic conductors, perovskites and garnets, in addition to the classic plots of Arrhenius lithium transport and the electrochemical stability window. Transitioning to SSB oxide electrolyte films with thicknesses close to the range for lithium-ion battery separators could provide ample opportunities for low-temperature ceramic manufacture and potential cost reduction. High-performance solid-state electrolytes are key to enabling solid-state batteries that hold great promise for future energy storage. The authors survey the fabrication process of thin-film versus thick oxide-based solid-state electrolytes and discuss their material design and processing options.
doi_str_mv 10.1038/s41560-020-00759-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503525572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503525572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-9f6348360458a48a30c0f1431174a56e104b56f5fb1e6fe71ba70a42f338a02c3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EElXpH2CKxBw4f5zjjlXFR6VKMMBsOcEuqUJcfM7Qf08gSDAxnO6G531Pehi75HDNQZobUhw1lCDGgQqXJZ6wmQA0ZYVKn_65z9mCaA8AYikEGj5jq6cUG0_U9rsiv7V9UQ-5SLEeKBe-801OsTtmT0WIqaDYta8lZZd9UbucfWo9XbCz4Dryi589Zy93t8_rh3L7eL9Zr7ZlIw3mchm0VEZqUGicMk5CA4EryXmlHGrPQdWoA4aaex18xWtXgVMiSGkciEbO2dXUe0jxY_CU7T4OqR9fWoEgUSBWYqTERDUpEiUf7CG17y4dLQf7ZctOtuxoy37bsjiG5BSiEe53Pv1W_5P6BGcca-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503525572</pqid></control><display><type>article</type><title>Processing thin but robust electrolytes for solid-state batteries</title><source>Alma/SFX Local Collection</source><creator>Balaish, Moran ; Gonzalez-Rosillo, Juan Carlos ; Kim, Kun Joong ; Zhu, Yuntong ; Hood, Zachary D. ; Rupp, Jennifer L. M.</creator><creatorcontrib>Balaish, Moran ; Gonzalez-Rosillo, Juan Carlos ; Kim, Kun Joong ; Zhu, Yuntong ; Hood, Zachary D. ; Rupp, Jennifer L. M.</creatorcontrib><description>The widespread adoption of high-energy-density solid-state batteries (SSBs) requires cost-effective processing and the integration of solid electrolytes of about the same thickness as the polymer-membrane separators found in conventional lithium-ion batteries. In this Review, we critically discuss the current status of research on SSB processing as well as recent cost calculations, and compare SSB oxide electrolyte material and processing options in terms of performance parameters for thick versus thin ceramics. We identify as critical for future SSB design the need to capture the thermal processing budget and the stability of the phase of interest for oxide solid electrolytes, namely lithium phosphorus oxynitride, sodium superionic conductors, perovskites and garnets, in addition to the classic plots of Arrhenius lithium transport and the electrochemical stability window. Transitioning to SSB oxide electrolyte films with thicknesses close to the range for lithium-ion battery separators could provide ample opportunities for low-temperature ceramic manufacture and potential cost reduction. High-performance solid-state electrolytes are key to enabling solid-state batteries that hold great promise for future energy storage. The authors survey the fabrication process of thin-film versus thick oxide-based solid-state electrolytes and discuss their material design and processing options.</description><identifier>ISSN: 2058-7546</identifier><identifier>EISSN: 2058-7546</identifier><identifier>DOI: 10.1038/s41560-020-00759-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299 ; 639/4077/4079/891 ; 639/638/161 ; Conductors ; Economics and Management ; Electrochemistry ; Electrolytes ; Energy ; Energy Policy ; Energy Storage ; Energy Systems ; Fabrication ; Garnets ; Lithium ; Lithium-ion batteries ; Low temperature ; Molten salt electrolytes ; Parameter identification ; Perovskites ; Phosphorus ; Polymers ; Rechargeable batteries ; Renewable and Green Energy ; Review Article ; Separators ; Solid electrolytes ; Solid state ; Stability ; Storage batteries ; Thickness ; Thin films</subject><ispartof>Nature energy, 2021-03, Vol.6 (3), p.227-239</ispartof><rights>Springer Nature Limited 2021</rights><rights>Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-9f6348360458a48a30c0f1431174a56e104b56f5fb1e6fe71ba70a42f338a02c3</citedby><cites>FETCH-LOGICAL-c385t-9f6348360458a48a30c0f1431174a56e104b56f5fb1e6fe71ba70a42f338a02c3</cites><orcidid>0000-0002-4744-8764 ; 0000-0002-3061-9889 ; 0000-0001-7160-0108 ; 0000-0001-6017-174X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Balaish, Moran</creatorcontrib><creatorcontrib>Gonzalez-Rosillo, Juan Carlos</creatorcontrib><creatorcontrib>Kim, Kun Joong</creatorcontrib><creatorcontrib>Zhu, Yuntong</creatorcontrib><creatorcontrib>Hood, Zachary D.</creatorcontrib><creatorcontrib>Rupp, Jennifer L. M.</creatorcontrib><title>Processing thin but robust electrolytes for solid-state batteries</title><title>Nature energy</title><addtitle>Nat Energy</addtitle><description>The widespread adoption of high-energy-density solid-state batteries (SSBs) requires cost-effective processing and the integration of solid electrolytes of about the same thickness as the polymer-membrane separators found in conventional lithium-ion batteries. In this Review, we critically discuss the current status of research on SSB processing as well as recent cost calculations, and compare SSB oxide electrolyte material and processing options in terms of performance parameters for thick versus thin ceramics. We identify as critical for future SSB design the need to capture the thermal processing budget and the stability of the phase of interest for oxide solid electrolytes, namely lithium phosphorus oxynitride, sodium superionic conductors, perovskites and garnets, in addition to the classic plots of Arrhenius lithium transport and the electrochemical stability window. Transitioning to SSB oxide electrolyte films with thicknesses close to the range for lithium-ion battery separators could provide ample opportunities for low-temperature ceramic manufacture and potential cost reduction. High-performance solid-state electrolytes are key to enabling solid-state batteries that hold great promise for future energy storage. The authors survey the fabrication process of thin-film versus thick oxide-based solid-state electrolytes and discuss their material design and processing options.</description><subject>639/301/299</subject><subject>639/4077/4079/891</subject><subject>639/638/161</subject><subject>Conductors</subject><subject>Economics and Management</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Energy Policy</subject><subject>Energy Storage</subject><subject>Energy Systems</subject><subject>Fabrication</subject><subject>Garnets</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Low temperature</subject><subject>Molten salt electrolytes</subject><subject>Parameter identification</subject><subject>Perovskites</subject><subject>Phosphorus</subject><subject>Polymers</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><subject>Review Article</subject><subject>Separators</subject><subject>Solid electrolytes</subject><subject>Solid state</subject><subject>Stability</subject><subject>Storage batteries</subject><subject>Thickness</subject><subject>Thin films</subject><issn>2058-7546</issn><issn>2058-7546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAQhi0EElXpH2CKxBw4f5zjjlXFR6VKMMBsOcEuqUJcfM7Qf08gSDAxnO6G531Pehi75HDNQZobUhw1lCDGgQqXJZ6wmQA0ZYVKn_65z9mCaA8AYikEGj5jq6cUG0_U9rsiv7V9UQ-5SLEeKBe-801OsTtmT0WIqaDYta8lZZd9UbucfWo9XbCz4Dryi589Zy93t8_rh3L7eL9Zr7ZlIw3mchm0VEZqUGicMk5CA4EryXmlHGrPQdWoA4aaex18xWtXgVMiSGkciEbO2dXUe0jxY_CU7T4OqR9fWoEgUSBWYqTERDUpEiUf7CG17y4dLQf7ZctOtuxoy37bsjiG5BSiEe53Pv1W_5P6BGcca-I</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Balaish, Moran</creator><creator>Gonzalez-Rosillo, Juan Carlos</creator><creator>Kim, Kun Joong</creator><creator>Zhu, Yuntong</creator><creator>Hood, Zachary D.</creator><creator>Rupp, Jennifer L. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4744-8764</orcidid><orcidid>https://orcid.org/0000-0002-3061-9889</orcidid><orcidid>https://orcid.org/0000-0001-7160-0108</orcidid><orcidid>https://orcid.org/0000-0001-6017-174X</orcidid></search><sort><creationdate>20210301</creationdate><title>Processing thin but robust electrolytes for solid-state batteries</title><author>Balaish, Moran ; Gonzalez-Rosillo, Juan Carlos ; Kim, Kun Joong ; Zhu, Yuntong ; Hood, Zachary D. ; Rupp, Jennifer L. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-9f6348360458a48a30c0f1431174a56e104b56f5fb1e6fe71ba70a42f338a02c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/299</topic><topic>639/4077/4079/891</topic><topic>639/638/161</topic><topic>Conductors</topic><topic>Economics and Management</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Energy Policy</topic><topic>Energy Storage</topic><topic>Energy Systems</topic><topic>Fabrication</topic><topic>Garnets</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Low temperature</topic><topic>Molten salt electrolytes</topic><topic>Parameter identification</topic><topic>Perovskites</topic><topic>Phosphorus</topic><topic>Polymers</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><topic>Review Article</topic><topic>Separators</topic><topic>Solid electrolytes</topic><topic>Solid state</topic><topic>Stability</topic><topic>Storage batteries</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balaish, Moran</creatorcontrib><creatorcontrib>Gonzalez-Rosillo, Juan Carlos</creatorcontrib><creatorcontrib>Kim, Kun Joong</creatorcontrib><creatorcontrib>Zhu, Yuntong</creatorcontrib><creatorcontrib>Hood, Zachary D.</creatorcontrib><creatorcontrib>Rupp, Jennifer L. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balaish, Moran</au><au>Gonzalez-Rosillo, Juan Carlos</au><au>Kim, Kun Joong</au><au>Zhu, Yuntong</au><au>Hood, Zachary D.</au><au>Rupp, Jennifer L. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Processing thin but robust electrolytes for solid-state batteries</atitle><jtitle>Nature energy</jtitle><stitle>Nat Energy</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>6</volume><issue>3</issue><spage>227</spage><epage>239</epage><pages>227-239</pages><issn>2058-7546</issn><eissn>2058-7546</eissn><abstract>The widespread adoption of high-energy-density solid-state batteries (SSBs) requires cost-effective processing and the integration of solid electrolytes of about the same thickness as the polymer-membrane separators found in conventional lithium-ion batteries. In this Review, we critically discuss the current status of research on SSB processing as well as recent cost calculations, and compare SSB oxide electrolyte material and processing options in terms of performance parameters for thick versus thin ceramics. We identify as critical for future SSB design the need to capture the thermal processing budget and the stability of the phase of interest for oxide solid electrolytes, namely lithium phosphorus oxynitride, sodium superionic conductors, perovskites and garnets, in addition to the classic plots of Arrhenius lithium transport and the electrochemical stability window. Transitioning to SSB oxide electrolyte films with thicknesses close to the range for lithium-ion battery separators could provide ample opportunities for low-temperature ceramic manufacture and potential cost reduction. High-performance solid-state electrolytes are key to enabling solid-state batteries that hold great promise for future energy storage. The authors survey the fabrication process of thin-film versus thick oxide-based solid-state electrolytes and discuss their material design and processing options.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41560-020-00759-5</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4744-8764</orcidid><orcidid>https://orcid.org/0000-0002-3061-9889</orcidid><orcidid>https://orcid.org/0000-0001-7160-0108</orcidid><orcidid>https://orcid.org/0000-0001-6017-174X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2058-7546
ispartof Nature energy, 2021-03, Vol.6 (3), p.227-239
issn 2058-7546
2058-7546
language eng
recordid cdi_proquest_journals_2503525572
source Alma/SFX Local Collection
subjects 639/301/299
639/4077/4079/891
639/638/161
Conductors
Economics and Management
Electrochemistry
Electrolytes
Energy
Energy Policy
Energy Storage
Energy Systems
Fabrication
Garnets
Lithium
Lithium-ion batteries
Low temperature
Molten salt electrolytes
Parameter identification
Perovskites
Phosphorus
Polymers
Rechargeable batteries
Renewable and Green Energy
Review Article
Separators
Solid electrolytes
Solid state
Stability
Storage batteries
Thickness
Thin films
title Processing thin but robust electrolytes for solid-state batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Processing%20thin%20but%20robust%20electrolytes%20for%20solid-state%20batteries&rft.jtitle=Nature%20energy&rft.au=Balaish,%20Moran&rft.date=2021-03-01&rft.volume=6&rft.issue=3&rft.spage=227&rft.epage=239&rft.pages=227-239&rft.issn=2058-7546&rft.eissn=2058-7546&rft_id=info:doi/10.1038/s41560-020-00759-5&rft_dat=%3Cproquest_cross%3E2503525572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503525572&rft_id=info:pmid/&rfr_iscdi=true