Processing thin but robust electrolytes for solid-state batteries

The widespread adoption of high-energy-density solid-state batteries (SSBs) requires cost-effective processing and the integration of solid electrolytes of about the same thickness as the polymer-membrane separators found in conventional lithium-ion batteries. In this Review, we critically discuss t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature energy 2021-03, Vol.6 (3), p.227-239
Hauptverfasser: Balaish, Moran, Gonzalez-Rosillo, Juan Carlos, Kim, Kun Joong, Zhu, Yuntong, Hood, Zachary D., Rupp, Jennifer L. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The widespread adoption of high-energy-density solid-state batteries (SSBs) requires cost-effective processing and the integration of solid electrolytes of about the same thickness as the polymer-membrane separators found in conventional lithium-ion batteries. In this Review, we critically discuss the current status of research on SSB processing as well as recent cost calculations, and compare SSB oxide electrolyte material and processing options in terms of performance parameters for thick versus thin ceramics. We identify as critical for future SSB design the need to capture the thermal processing budget and the stability of the phase of interest for oxide solid electrolytes, namely lithium phosphorus oxynitride, sodium superionic conductors, perovskites and garnets, in addition to the classic plots of Arrhenius lithium transport and the electrochemical stability window. Transitioning to SSB oxide electrolyte films with thicknesses close to the range for lithium-ion battery separators could provide ample opportunities for low-temperature ceramic manufacture and potential cost reduction. High-performance solid-state electrolytes are key to enabling solid-state batteries that hold great promise for future energy storage. The authors survey the fabrication process of thin-film versus thick oxide-based solid-state electrolytes and discuss their material design and processing options.
ISSN:2058-7546
2058-7546
DOI:10.1038/s41560-020-00759-5