MOEA/D-Based Probabilistic PBI Approach for Risk-Based Optimal Operation of Hybrid Energy System With Intermittent Power Uncertainty

The stochastic nature of intermittent energy resources has brought significant challenges to the optimal operation of the hybrid energy systems. This article proposes a probabilistic multiobjective evolutionary algorithm based on decomposition (MOEA/D) method with two-step risk-based decision-making...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2021-04, Vol.51 (4), p.2080-2090
Hauptverfasser: Zhang, Huifeng, Yue, Dong, Yue, Wenbin, Li, Kang, Yin, Mingjia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The stochastic nature of intermittent energy resources has brought significant challenges to the optimal operation of the hybrid energy systems. This article proposes a probabilistic multiobjective evolutionary algorithm based on decomposition (MOEA/D) method with two-step risk-based decision-making strategy to tackle this problem. A scenario-based technique is first utilized to generate a stochastic model of the hybrid energy system. Those scenarios divide the feasible domain into several regions. Then, based on the MOEA/D framework, a probabilistic penalty-based boundary intersection (PBI) with gradient descent differential evolution (GDDE) algorithm is proposed to search the optimal scheme from these regions under different uncertainty budgets. To ensure reliable and low risk operation of the hybrid energy system, the Markov inequality is employed to deduce a proper interval of the uncertainty budget. Further, a fuzzy grid technique is proposed to choose the best scheme for real-world applications. The experimental results confirm that the probabilistic adjustable parameters can properly control the uncertainty budget and lower the risk probability. Further, it is also shown that the proposed MOEA/D-GDDE can significantly enhance the optimization efficiency.
ISSN:2168-2216
2168-2232
DOI:10.1109/TSMC.2019.2931636