On a Limiting Passage as the Thickness of a Rigid Inclusions in an Equilibrium Problem for a Kirchhoff-Love Plate with a Crack
The paper considers equilibrium models of Kirchhoff-Love plates with rigid inclusions of two types. The first type of inclusion is described by three-dimensional sets, the second one corresponds to a cylindrical rigid inclusion, which is perpendicular to the plate’s median plane in the initial state...
Gespeichert in:
Veröffentlicht in: | Journal of Siberian Federal University. Mathematics & Physics 2021-01, Vol.14 (1), p.28-41 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper considers equilibrium models of Kirchhoff-Love plates with rigid inclusions of two types. The first type of inclusion is described by three-dimensional sets, the second one corresponds to a cylindrical rigid inclusion, which is perpendicular to the plate’s median plane in the initial state. For both models, we suppose that there is a through crack along a fixed part of the inclusion’s boundary. On the crack non-penetration conditions are prescribed which correspond to a certain known configuration bending near the crack. The uniqueness solvability of a new problems for a Kirchhoff-Love plate with a flat rigid inclusion is proved. It is proved that when a thickness parameter tends to zero, the problem for a flat rigid inclusion can be represented as a limiting task for a family of variational problems concerning the inclusions of the first type. A solvability of an optimal control problem with a control given by the size of inclusions is proved |
---|---|
ISSN: | 1997-1397 2313-6022 |
DOI: | 10.17516/1997-1397-2021-14-1-28-41 |