On the Geometry of Slow-Fast Phase Spaces and the Semiclassical Quantization
In the context of the averaging method for Poisson and symplectic structures and the theory of Hannay–Berry connections, we discuss some aspects of the semiclassical quantization for a class of slow-fast Hamiltonian systems with two degrees of freedom. For a pseudodifferential Weyl operator with two...
Gespeichert in:
Veröffentlicht in: | Russian journal of mathematical physics 2021, Vol.28 (1), p.8-21 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | 1 |
container_start_page | 8 |
container_title | Russian journal of mathematical physics |
container_volume | 28 |
creator | Avendano-Camacho, M. Mamani-Alegria, N. Vorobiev, Y. M. |
description | In the context of the averaging method for Poisson and symplectic structures and the theory of Hannay–Berry connections, we discuss some aspects of the semiclassical quantization for a class of slow-fast Hamiltonian systems with two degrees of freedom. For a pseudodifferential Weyl operator with two small parameters corresponding to the semiclassical and adiabatic limits, we show how to construct some series of quasimodes associated to a family of Lagrangian 2-tori which are almost invariant with respect to the classical dynamics. |
doi_str_mv | 10.1134/S1061920821010039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2503173752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503173752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5e108219288cbbb69530053f3958259ac4b8774c066d57ebf70c5dfe1cae72d03</originalsourceid><addsrcrecordid>eNqNkFFLwzAQx4MoOKcfwLeCj1K9NE3aPkpxUxhMqT6XNL26jq6ZTcqYn950FX0Qwacc3O-Xu_sTcknhhlIW3mYUBE0CiAMKFIAlR2RCOee-ECw-drVr-0P_lJwZswYQEEM4IYtl69kVenPUG7Td3tOVlzV658-ksd7TShr0sq1UaDzZlgc0w02tGmlMrWTjPfeytfWHtLVuz8lJJRuDF1_vlLzO7l_SB3-xnD-mdwtfMSqsz5EOeyZBHKuiKETCGQBnFUt4HPBEqrCIoyhUIETJIyyqCBQvK6RKYhSUwKbkavx32-n3Ho3N17rvWjcyDzgwGrGIB46iI6U6bUyHVb7t6o3s9jmFfAgt_xWac65HZ4eFroyqsVX47YGLjUEkmHAVDBPi_9NpbQ8hpbpvrVODUTUOb9-w-znh7-0-AdICjNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503173752</pqid></control><display><type>article</type><title>On the Geometry of Slow-Fast Phase Spaces and the Semiclassical Quantization</title><source>SpringerLink Journals - AutoHoldings</source><creator>Avendano-Camacho, M. ; Mamani-Alegria, N. ; Vorobiev, Y. M.</creator><creatorcontrib>Avendano-Camacho, M. ; Mamani-Alegria, N. ; Vorobiev, Y. M.</creatorcontrib><description>In the context of the averaging method for Poisson and symplectic structures and the theory of Hannay–Berry connections, we discuss some aspects of the semiclassical quantization for a class of slow-fast Hamiltonian systems with two degrees of freedom. For a pseudodifferential Weyl operator with two small parameters corresponding to the semiclassical and adiabatic limits, we show how to construct some series of quasimodes associated to a family of Lagrangian 2-tori which are almost invariant with respect to the classical dynamics.</description><identifier>ISSN: 1061-9208</identifier><identifier>EISSN: 1555-6638</identifier><identifier>DOI: 10.1134/S1061920821010039</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Hamiltonian functions ; Mathematical and Computational Physics ; Measurement ; Physical Sciences ; Physics ; Physics and Astronomy ; Physics, Mathematical ; Science & Technology ; Theoretical ; Toruses</subject><ispartof>Russian journal of mathematical physics, 2021, Vol.28 (1), p.8-21</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000630763600002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c316t-5e108219288cbbb69530053f3958259ac4b8774c066d57ebf70c5dfe1cae72d03</citedby><cites>FETCH-LOGICAL-c316t-5e108219288cbbb69530053f3958259ac4b8774c066d57ebf70c5dfe1cae72d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1061920821010039$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1061920821010039$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Avendano-Camacho, M.</creatorcontrib><creatorcontrib>Mamani-Alegria, N.</creatorcontrib><creatorcontrib>Vorobiev, Y. M.</creatorcontrib><title>On the Geometry of Slow-Fast Phase Spaces and the Semiclassical Quantization</title><title>Russian journal of mathematical physics</title><addtitle>Russ. J. Math. Phys</addtitle><addtitle>RUSS J MATH PHYS</addtitle><description>In the context of the averaging method for Poisson and symplectic structures and the theory of Hannay–Berry connections, we discuss some aspects of the semiclassical quantization for a class of slow-fast Hamiltonian systems with two degrees of freedom. For a pseudodifferential Weyl operator with two small parameters corresponding to the semiclassical and adiabatic limits, we show how to construct some series of quasimodes associated to a family of Lagrangian 2-tori which are almost invariant with respect to the classical dynamics.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Hamiltonian functions</subject><subject>Mathematical and Computational Physics</subject><subject>Measurement</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics, Mathematical</subject><subject>Science & Technology</subject><subject>Theoretical</subject><subject>Toruses</subject><issn>1061-9208</issn><issn>1555-6638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkFFLwzAQx4MoOKcfwLeCj1K9NE3aPkpxUxhMqT6XNL26jq6ZTcqYn950FX0Qwacc3O-Xu_sTcknhhlIW3mYUBE0CiAMKFIAlR2RCOee-ECw-drVr-0P_lJwZswYQEEM4IYtl69kVenPUG7Td3tOVlzV658-ksd7TShr0sq1UaDzZlgc0w02tGmlMrWTjPfeytfWHtLVuz8lJJRuDF1_vlLzO7l_SB3-xnD-mdwtfMSqsz5EOeyZBHKuiKETCGQBnFUt4HPBEqrCIoyhUIETJIyyqCBQvK6RKYhSUwKbkavx32-n3Ho3N17rvWjcyDzgwGrGIB46iI6U6bUyHVb7t6o3s9jmFfAgt_xWac65HZ4eFroyqsVX47YGLjUEkmHAVDBPi_9NpbQ8hpbpvrVODUTUOb9-w-znh7-0-AdICjNw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Avendano-Camacho, M.</creator><creator>Mamani-Alegria, N.</creator><creator>Vorobiev, Y. M.</creator><general>Pleiades Publishing</general><general>Pleiades Publishing Inc</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>On the Geometry of Slow-Fast Phase Spaces and the Semiclassical Quantization</title><author>Avendano-Camacho, M. ; Mamani-Alegria, N. ; Vorobiev, Y. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5e108219288cbbb69530053f3958259ac4b8774c066d57ebf70c5dfe1cae72d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Hamiltonian functions</topic><topic>Mathematical and Computational Physics</topic><topic>Measurement</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics, Mathematical</topic><topic>Science & Technology</topic><topic>Theoretical</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avendano-Camacho, M.</creatorcontrib><creatorcontrib>Mamani-Alegria, N.</creatorcontrib><creatorcontrib>Vorobiev, Y. M.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Russian journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avendano-Camacho, M.</au><au>Mamani-Alegria, N.</au><au>Vorobiev, Y. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Geometry of Slow-Fast Phase Spaces and the Semiclassical Quantization</atitle><jtitle>Russian journal of mathematical physics</jtitle><stitle>Russ. J. Math. Phys</stitle><stitle>RUSS J MATH PHYS</stitle><date>2021</date><risdate>2021</risdate><volume>28</volume><issue>1</issue><spage>8</spage><epage>21</epage><pages>8-21</pages><issn>1061-9208</issn><eissn>1555-6638</eissn><abstract>In the context of the averaging method for Poisson and symplectic structures and the theory of Hannay–Berry connections, we discuss some aspects of the semiclassical quantization for a class of slow-fast Hamiltonian systems with two degrees of freedom. For a pseudodifferential Weyl operator with two small parameters corresponding to the semiclassical and adiabatic limits, we show how to construct some series of quasimodes associated to a family of Lagrangian 2-tori which are almost invariant with respect to the classical dynamics.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1061920821010039</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-9208 |
ispartof | Russian journal of mathematical physics, 2021, Vol.28 (1), p.8-21 |
issn | 1061-9208 1555-6638 |
language | eng |
recordid | cdi_proquest_journals_2503173752 |
source | SpringerLink Journals - AutoHoldings |
subjects | 14/34 639/766/189 639/766/530 639/766/747 Hamiltonian functions Mathematical and Computational Physics Measurement Physical Sciences Physics Physics and Astronomy Physics, Mathematical Science & Technology Theoretical Toruses |
title | On the Geometry of Slow-Fast Phase Spaces and the Semiclassical Quantization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Geometry%20of%20Slow-Fast%20Phase%20Spaces%20and%20the%20Semiclassical%20Quantization&rft.jtitle=Russian%20journal%20of%20mathematical%20physics&rft.au=Avendano-Camacho,%20M.&rft.date=2021&rft.volume=28&rft.issue=1&rft.spage=8&rft.epage=21&rft.pages=8-21&rft.issn=1061-9208&rft.eissn=1555-6638&rft_id=info:doi/10.1134/S1061920821010039&rft_dat=%3Cproquest_sprin%3E2503173752%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503173752&rft_id=info:pmid/&rfr_iscdi=true |