On the Geometry of Slow-Fast Phase Spaces and the Semiclassical Quantization

In the context of the averaging method for Poisson and symplectic structures and the theory of Hannay–Berry connections, we discuss some aspects of the semiclassical quantization for a class of slow-fast Hamiltonian systems with two degrees of freedom. For a pseudodifferential Weyl operator with two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of mathematical physics 2021, Vol.28 (1), p.8-21
Hauptverfasser: Avendano-Camacho, M., Mamani-Alegria, N., Vorobiev, Y. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 1
container_start_page 8
container_title Russian journal of mathematical physics
container_volume 28
creator Avendano-Camacho, M.
Mamani-Alegria, N.
Vorobiev, Y. M.
description In the context of the averaging method for Poisson and symplectic structures and the theory of Hannay–Berry connections, we discuss some aspects of the semiclassical quantization for a class of slow-fast Hamiltonian systems with two degrees of freedom. For a pseudodifferential Weyl operator with two small parameters corresponding to the semiclassical and adiabatic limits, we show how to construct some series of quasimodes associated to a family of Lagrangian 2-tori which are almost invariant with respect to the classical dynamics.
doi_str_mv 10.1134/S1061920821010039
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2503173752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503173752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5e108219288cbbb69530053f3958259ac4b8774c066d57ebf70c5dfe1cae72d03</originalsourceid><addsrcrecordid>eNqNkFFLwzAQx4MoOKcfwLeCj1K9NE3aPkpxUxhMqT6XNL26jq6ZTcqYn950FX0Qwacc3O-Xu_sTcknhhlIW3mYUBE0CiAMKFIAlR2RCOee-ECw-drVr-0P_lJwZswYQEEM4IYtl69kVenPUG7Td3tOVlzV658-ksd7TShr0sq1UaDzZlgc0w02tGmlMrWTjPfeytfWHtLVuz8lJJRuDF1_vlLzO7l_SB3-xnD-mdwtfMSqsz5EOeyZBHKuiKETCGQBnFUt4HPBEqrCIoyhUIETJIyyqCBQvK6RKYhSUwKbkavx32-n3Ho3N17rvWjcyDzgwGrGIB46iI6U6bUyHVb7t6o3s9jmFfAgt_xWac65HZ4eFroyqsVX47YGLjUEkmHAVDBPi_9NpbQ8hpbpvrVODUTUOb9-w-znh7-0-AdICjNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503173752</pqid></control><display><type>article</type><title>On the Geometry of Slow-Fast Phase Spaces and the Semiclassical Quantization</title><source>SpringerLink Journals - AutoHoldings</source><creator>Avendano-Camacho, M. ; Mamani-Alegria, N. ; Vorobiev, Y. M.</creator><creatorcontrib>Avendano-Camacho, M. ; Mamani-Alegria, N. ; Vorobiev, Y. M.</creatorcontrib><description>In the context of the averaging method for Poisson and symplectic structures and the theory of Hannay–Berry connections, we discuss some aspects of the semiclassical quantization for a class of slow-fast Hamiltonian systems with two degrees of freedom. For a pseudodifferential Weyl operator with two small parameters corresponding to the semiclassical and adiabatic limits, we show how to construct some series of quasimodes associated to a family of Lagrangian 2-tori which are almost invariant with respect to the classical dynamics.</description><identifier>ISSN: 1061-9208</identifier><identifier>EISSN: 1555-6638</identifier><identifier>DOI: 10.1134/S1061920821010039</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Hamiltonian functions ; Mathematical and Computational Physics ; Measurement ; Physical Sciences ; Physics ; Physics and Astronomy ; Physics, Mathematical ; Science &amp; Technology ; Theoretical ; Toruses</subject><ispartof>Russian journal of mathematical physics, 2021, Vol.28 (1), p.8-21</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000630763600002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c316t-5e108219288cbbb69530053f3958259ac4b8774c066d57ebf70c5dfe1cae72d03</citedby><cites>FETCH-LOGICAL-c316t-5e108219288cbbb69530053f3958259ac4b8774c066d57ebf70c5dfe1cae72d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1061920821010039$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1061920821010039$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Avendano-Camacho, M.</creatorcontrib><creatorcontrib>Mamani-Alegria, N.</creatorcontrib><creatorcontrib>Vorobiev, Y. M.</creatorcontrib><title>On the Geometry of Slow-Fast Phase Spaces and the Semiclassical Quantization</title><title>Russian journal of mathematical physics</title><addtitle>Russ. J. Math. Phys</addtitle><addtitle>RUSS J MATH PHYS</addtitle><description>In the context of the averaging method for Poisson and symplectic structures and the theory of Hannay–Berry connections, we discuss some aspects of the semiclassical quantization for a class of slow-fast Hamiltonian systems with two degrees of freedom. For a pseudodifferential Weyl operator with two small parameters corresponding to the semiclassical and adiabatic limits, we show how to construct some series of quasimodes associated to a family of Lagrangian 2-tori which are almost invariant with respect to the classical dynamics.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Hamiltonian functions</subject><subject>Mathematical and Computational Physics</subject><subject>Measurement</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics, Mathematical</subject><subject>Science &amp; Technology</subject><subject>Theoretical</subject><subject>Toruses</subject><issn>1061-9208</issn><issn>1555-6638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkFFLwzAQx4MoOKcfwLeCj1K9NE3aPkpxUxhMqT6XNL26jq6ZTcqYn950FX0Qwacc3O-Xu_sTcknhhlIW3mYUBE0CiAMKFIAlR2RCOee-ECw-drVr-0P_lJwZswYQEEM4IYtl69kVenPUG7Td3tOVlzV658-ksd7TShr0sq1UaDzZlgc0w02tGmlMrWTjPfeytfWHtLVuz8lJJRuDF1_vlLzO7l_SB3-xnD-mdwtfMSqsz5EOeyZBHKuiKETCGQBnFUt4HPBEqrCIoyhUIETJIyyqCBQvK6RKYhSUwKbkavx32-n3Ho3N17rvWjcyDzgwGrGIB46iI6U6bUyHVb7t6o3s9jmFfAgt_xWac65HZ4eFroyqsVX47YGLjUEkmHAVDBPi_9NpbQ8hpbpvrVODUTUOb9-w-znh7-0-AdICjNw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Avendano-Camacho, M.</creator><creator>Mamani-Alegria, N.</creator><creator>Vorobiev, Y. M.</creator><general>Pleiades Publishing</general><general>Pleiades Publishing Inc</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>On the Geometry of Slow-Fast Phase Spaces and the Semiclassical Quantization</title><author>Avendano-Camacho, M. ; Mamani-Alegria, N. ; Vorobiev, Y. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5e108219288cbbb69530053f3958259ac4b8774c066d57ebf70c5dfe1cae72d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Hamiltonian functions</topic><topic>Mathematical and Computational Physics</topic><topic>Measurement</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics, Mathematical</topic><topic>Science &amp; Technology</topic><topic>Theoretical</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avendano-Camacho, M.</creatorcontrib><creatorcontrib>Mamani-Alegria, N.</creatorcontrib><creatorcontrib>Vorobiev, Y. M.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Russian journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avendano-Camacho, M.</au><au>Mamani-Alegria, N.</au><au>Vorobiev, Y. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Geometry of Slow-Fast Phase Spaces and the Semiclassical Quantization</atitle><jtitle>Russian journal of mathematical physics</jtitle><stitle>Russ. J. Math. Phys</stitle><stitle>RUSS J MATH PHYS</stitle><date>2021</date><risdate>2021</risdate><volume>28</volume><issue>1</issue><spage>8</spage><epage>21</epage><pages>8-21</pages><issn>1061-9208</issn><eissn>1555-6638</eissn><abstract>In the context of the averaging method for Poisson and symplectic structures and the theory of Hannay–Berry connections, we discuss some aspects of the semiclassical quantization for a class of slow-fast Hamiltonian systems with two degrees of freedom. For a pseudodifferential Weyl operator with two small parameters corresponding to the semiclassical and adiabatic limits, we show how to construct some series of quasimodes associated to a family of Lagrangian 2-tori which are almost invariant with respect to the classical dynamics.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1061920821010039</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-9208
ispartof Russian journal of mathematical physics, 2021, Vol.28 (1), p.8-21
issn 1061-9208
1555-6638
language eng
recordid cdi_proquest_journals_2503173752
source SpringerLink Journals - AutoHoldings
subjects 14/34
639/766/189
639/766/530
639/766/747
Hamiltonian functions
Mathematical and Computational Physics
Measurement
Physical Sciences
Physics
Physics and Astronomy
Physics, Mathematical
Science & Technology
Theoretical
Toruses
title On the Geometry of Slow-Fast Phase Spaces and the Semiclassical Quantization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Geometry%20of%20Slow-Fast%20Phase%20Spaces%20and%20the%20Semiclassical%20Quantization&rft.jtitle=Russian%20journal%20of%20mathematical%20physics&rft.au=Avendano-Camacho,%20M.&rft.date=2021&rft.volume=28&rft.issue=1&rft.spage=8&rft.epage=21&rft.pages=8-21&rft.issn=1061-9208&rft.eissn=1555-6638&rft_id=info:doi/10.1134/S1061920821010039&rft_dat=%3Cproquest_sprin%3E2503173752%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503173752&rft_id=info:pmid/&rfr_iscdi=true