On the Geometry of Slow-Fast Phase Spaces and the Semiclassical Quantization

In the context of the averaging method for Poisson and symplectic structures and the theory of Hannay–Berry connections, we discuss some aspects of the semiclassical quantization for a class of slow-fast Hamiltonian systems with two degrees of freedom. For a pseudodifferential Weyl operator with two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of mathematical physics 2021, Vol.28 (1), p.8-21
Hauptverfasser: Avendano-Camacho, M., Mamani-Alegria, N., Vorobiev, Y. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the context of the averaging method for Poisson and symplectic structures and the theory of Hannay–Berry connections, we discuss some aspects of the semiclassical quantization for a class of slow-fast Hamiltonian systems with two degrees of freedom. For a pseudodifferential Weyl operator with two small parameters corresponding to the semiclassical and adiabatic limits, we show how to construct some series of quasimodes associated to a family of Lagrangian 2-tori which are almost invariant with respect to the classical dynamics.
ISSN:1061-9208
1555-6638
DOI:10.1134/S1061920821010039