Shapley-Lorenz eXplainable Artificial Intelligence

•A new global eXplainable Artificial Intelligence method is proposed.•Our method is based on the use of Shapley values and Lorenz Zonoid decomposition.•The derived variable importance criterion fulfills explainability requirement.•The application to bitcoin data shows the above mentioned advantages....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2021-04, Vol.167, p.114104, Article 114104
Hauptverfasser: Giudici, Paolo, Raffinetti, Emanuela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 114104
container_title Expert systems with applications
container_volume 167
creator Giudici, Paolo
Raffinetti, Emanuela
description •A new global eXplainable Artificial Intelligence method is proposed.•Our method is based on the use of Shapley values and Lorenz Zonoid decomposition.•The derived variable importance criterion fulfills explainability requirement.•The application to bitcoin data shows the above mentioned advantages. Explainability of artificial intelligence methods has become a crucial issue, especially in the most regulated fields, such as health and finance. In this paper, we provide a global explainable AI method which is based on Lorenz decompositions, thus extending previous contributions based on variance decompositions. This allows the resulting Shapley-Lorenz decomposition to be more generally applicable, and provides a unifying variable importance criterion that combines predictive accuracy with explainability, using a normalised and easy to interpret metric. The proposed decomposition is illustrated within the context of a real financial problem: the prediction of bitcoin prices.
doi_str_mv 10.1016/j.eswa.2020.114104
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503172878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417420308575</els_id><sourcerecordid>2503172878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-ab40a7335886f5d9b0dc3ebecef0a40ce4f691df39036fc5c7bcb2d84df815e43</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKsB160nlzYpuBkGLwMDLlRwF9L0RFNqW5OOMj69LXXt6sDh_87lI-SSQkqB5td1ivHbpAzY2KCCgjgiC6okT3JZ8GOygCKTiaBSnJKzGGsAKgHkgrCnd9M3eEh2XcD2Z4WvfWN8a8oGV-sweOetN81q2w7YNP4NW4vn5MSZJuLFX12Sl7vb581Dsnu8327Wu8RyyYbElAKM5DxTKndZVZRQWY4lWnRgBFgULi9o5XgBPHc2s7K0JauUqJyiGQq-JFfz3D50n3uMg667fWjHlZplwKlkSqoxxeaUDV2MAZ3ug_8w4aAp6MmNrvXkRk9u9OxmhG5mCMf7vzwGHa2ffqt8QDvoqvP_4b8ermzr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503172878</pqid></control><display><type>article</type><title>Shapley-Lorenz eXplainable Artificial Intelligence</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Giudici, Paolo ; Raffinetti, Emanuela</creator><creatorcontrib>Giudici, Paolo ; Raffinetti, Emanuela</creatorcontrib><description>•A new global eXplainable Artificial Intelligence method is proposed.•Our method is based on the use of Shapley values and Lorenz Zonoid decomposition.•The derived variable importance criterion fulfills explainability requirement.•The application to bitcoin data shows the above mentioned advantages. Explainability of artificial intelligence methods has become a crucial issue, especially in the most regulated fields, such as health and finance. In this paper, we provide a global explainable AI method which is based on Lorenz decompositions, thus extending previous contributions based on variance decompositions. This allows the resulting Shapley-Lorenz decomposition to be more generally applicable, and provides a unifying variable importance criterion that combines predictive accuracy with explainability, using a normalised and easy to interpret metric. The proposed decomposition is illustrated within the context of a real financial problem: the prediction of bitcoin prices.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2020.114104</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Artificial intelligence ; Decomposition ; Explainable artificial intelligence ; Lorenz Zonoids ; Predictive accuracy ; Shapley values</subject><ispartof>Expert systems with applications, 2021-04, Vol.167, p.114104, Article 114104</ispartof><rights>2020 The Authors</rights><rights>Copyright Elsevier BV Apr 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-ab40a7335886f5d9b0dc3ebecef0a40ce4f691df39036fc5c7bcb2d84df815e43</citedby><cites>FETCH-LOGICAL-c372t-ab40a7335886f5d9b0dc3ebecef0a40ce4f691df39036fc5c7bcb2d84df815e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2020.114104$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27913,27914,45984</link.rule.ids></links><search><creatorcontrib>Giudici, Paolo</creatorcontrib><creatorcontrib>Raffinetti, Emanuela</creatorcontrib><title>Shapley-Lorenz eXplainable Artificial Intelligence</title><title>Expert systems with applications</title><description>•A new global eXplainable Artificial Intelligence method is proposed.•Our method is based on the use of Shapley values and Lorenz Zonoid decomposition.•The derived variable importance criterion fulfills explainability requirement.•The application to bitcoin data shows the above mentioned advantages. Explainability of artificial intelligence methods has become a crucial issue, especially in the most regulated fields, such as health and finance. In this paper, we provide a global explainable AI method which is based on Lorenz decompositions, thus extending previous contributions based on variance decompositions. This allows the resulting Shapley-Lorenz decomposition to be more generally applicable, and provides a unifying variable importance criterion that combines predictive accuracy with explainability, using a normalised and easy to interpret metric. The proposed decomposition is illustrated within the context of a real financial problem: the prediction of bitcoin prices.</description><subject>Artificial intelligence</subject><subject>Decomposition</subject><subject>Explainable artificial intelligence</subject><subject>Lorenz Zonoids</subject><subject>Predictive accuracy</subject><subject>Shapley values</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKsB160nlzYpuBkGLwMDLlRwF9L0RFNqW5OOMj69LXXt6sDh_87lI-SSQkqB5td1ivHbpAzY2KCCgjgiC6okT3JZ8GOygCKTiaBSnJKzGGsAKgHkgrCnd9M3eEh2XcD2Z4WvfWN8a8oGV-sweOetN81q2w7YNP4NW4vn5MSZJuLFX12Sl7vb581Dsnu8327Wu8RyyYbElAKM5DxTKndZVZRQWY4lWnRgBFgULi9o5XgBPHc2s7K0JauUqJyiGQq-JFfz3D50n3uMg667fWjHlZplwKlkSqoxxeaUDV2MAZ3ug_8w4aAp6MmNrvXkRk9u9OxmhG5mCMf7vzwGHa2ffqt8QDvoqvP_4b8ermzr</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Giudici, Paolo</creator><creator>Raffinetti, Emanuela</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210401</creationdate><title>Shapley-Lorenz eXplainable Artificial Intelligence</title><author>Giudici, Paolo ; Raffinetti, Emanuela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-ab40a7335886f5d9b0dc3ebecef0a40ce4f691df39036fc5c7bcb2d84df815e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Decomposition</topic><topic>Explainable artificial intelligence</topic><topic>Lorenz Zonoids</topic><topic>Predictive accuracy</topic><topic>Shapley values</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giudici, Paolo</creatorcontrib><creatorcontrib>Raffinetti, Emanuela</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giudici, Paolo</au><au>Raffinetti, Emanuela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shapley-Lorenz eXplainable Artificial Intelligence</atitle><jtitle>Expert systems with applications</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>167</volume><spage>114104</spage><pages>114104-</pages><artnum>114104</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•A new global eXplainable Artificial Intelligence method is proposed.•Our method is based on the use of Shapley values and Lorenz Zonoid decomposition.•The derived variable importance criterion fulfills explainability requirement.•The application to bitcoin data shows the above mentioned advantages. Explainability of artificial intelligence methods has become a crucial issue, especially in the most regulated fields, such as health and finance. In this paper, we provide a global explainable AI method which is based on Lorenz decompositions, thus extending previous contributions based on variance decompositions. This allows the resulting Shapley-Lorenz decomposition to be more generally applicable, and provides a unifying variable importance criterion that combines predictive accuracy with explainability, using a normalised and easy to interpret metric. The proposed decomposition is illustrated within the context of a real financial problem: the prediction of bitcoin prices.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2020.114104</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2021-04, Vol.167, p.114104, Article 114104
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_2503172878
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Artificial intelligence
Decomposition
Explainable artificial intelligence
Lorenz Zonoids
Predictive accuracy
Shapley values
title Shapley-Lorenz eXplainable Artificial Intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shapley-Lorenz%20eXplainable%20Artificial%20Intelligence&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Giudici,%20Paolo&rft.date=2021-04-01&rft.volume=167&rft.spage=114104&rft.pages=114104-&rft.artnum=114104&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2020.114104&rft_dat=%3Cproquest_cross%3E2503172878%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503172878&rft_id=info:pmid/&rft_els_id=S0957417420308575&rfr_iscdi=true