Shapley-Lorenz eXplainable Artificial Intelligence
•A new global eXplainable Artificial Intelligence method is proposed.•Our method is based on the use of Shapley values and Lorenz Zonoid decomposition.•The derived variable importance criterion fulfills explainability requirement.•The application to bitcoin data shows the above mentioned advantages....
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2021-04, Vol.167, p.114104, Article 114104 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 114104 |
container_title | Expert systems with applications |
container_volume | 167 |
creator | Giudici, Paolo Raffinetti, Emanuela |
description | •A new global eXplainable Artificial Intelligence method is proposed.•Our method is based on the use of Shapley values and Lorenz Zonoid decomposition.•The derived variable importance criterion fulfills explainability requirement.•The application to bitcoin data shows the above mentioned advantages.
Explainability of artificial intelligence methods has become a crucial issue, especially in the most regulated fields, such as health and finance. In this paper, we provide a global explainable AI method which is based on Lorenz decompositions, thus extending previous contributions based on variance decompositions. This allows the resulting Shapley-Lorenz decomposition to be more generally applicable, and provides a unifying variable importance criterion that combines predictive accuracy with explainability, using a normalised and easy to interpret metric. The proposed decomposition is illustrated within the context of a real financial problem: the prediction of bitcoin prices. |
doi_str_mv | 10.1016/j.eswa.2020.114104 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503172878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417420308575</els_id><sourcerecordid>2503172878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-ab40a7335886f5d9b0dc3ebecef0a40ce4f691df39036fc5c7bcb2d84df815e43</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKsB160nlzYpuBkGLwMDLlRwF9L0RFNqW5OOMj69LXXt6sDh_87lI-SSQkqB5td1ivHbpAzY2KCCgjgiC6okT3JZ8GOygCKTiaBSnJKzGGsAKgHkgrCnd9M3eEh2XcD2Z4WvfWN8a8oGV-sweOetN81q2w7YNP4NW4vn5MSZJuLFX12Sl7vb581Dsnu8327Wu8RyyYbElAKM5DxTKndZVZRQWY4lWnRgBFgULi9o5XgBPHc2s7K0JauUqJyiGQq-JFfz3D50n3uMg667fWjHlZplwKlkSqoxxeaUDV2MAZ3ug_8w4aAp6MmNrvXkRk9u9OxmhG5mCMf7vzwGHa2ffqt8QDvoqvP_4b8ermzr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503172878</pqid></control><display><type>article</type><title>Shapley-Lorenz eXplainable Artificial Intelligence</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Giudici, Paolo ; Raffinetti, Emanuela</creator><creatorcontrib>Giudici, Paolo ; Raffinetti, Emanuela</creatorcontrib><description>•A new global eXplainable Artificial Intelligence method is proposed.•Our method is based on the use of Shapley values and Lorenz Zonoid decomposition.•The derived variable importance criterion fulfills explainability requirement.•The application to bitcoin data shows the above mentioned advantages.
Explainability of artificial intelligence methods has become a crucial issue, especially in the most regulated fields, such as health and finance. In this paper, we provide a global explainable AI method which is based on Lorenz decompositions, thus extending previous contributions based on variance decompositions. This allows the resulting Shapley-Lorenz decomposition to be more generally applicable, and provides a unifying variable importance criterion that combines predictive accuracy with explainability, using a normalised and easy to interpret metric. The proposed decomposition is illustrated within the context of a real financial problem: the prediction of bitcoin prices.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2020.114104</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Artificial intelligence ; Decomposition ; Explainable artificial intelligence ; Lorenz Zonoids ; Predictive accuracy ; Shapley values</subject><ispartof>Expert systems with applications, 2021-04, Vol.167, p.114104, Article 114104</ispartof><rights>2020 The Authors</rights><rights>Copyright Elsevier BV Apr 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-ab40a7335886f5d9b0dc3ebecef0a40ce4f691df39036fc5c7bcb2d84df815e43</citedby><cites>FETCH-LOGICAL-c372t-ab40a7335886f5d9b0dc3ebecef0a40ce4f691df39036fc5c7bcb2d84df815e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2020.114104$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27913,27914,45984</link.rule.ids></links><search><creatorcontrib>Giudici, Paolo</creatorcontrib><creatorcontrib>Raffinetti, Emanuela</creatorcontrib><title>Shapley-Lorenz eXplainable Artificial Intelligence</title><title>Expert systems with applications</title><description>•A new global eXplainable Artificial Intelligence method is proposed.•Our method is based on the use of Shapley values and Lorenz Zonoid decomposition.•The derived variable importance criterion fulfills explainability requirement.•The application to bitcoin data shows the above mentioned advantages.
Explainability of artificial intelligence methods has become a crucial issue, especially in the most regulated fields, such as health and finance. In this paper, we provide a global explainable AI method which is based on Lorenz decompositions, thus extending previous contributions based on variance decompositions. This allows the resulting Shapley-Lorenz decomposition to be more generally applicable, and provides a unifying variable importance criterion that combines predictive accuracy with explainability, using a normalised and easy to interpret metric. The proposed decomposition is illustrated within the context of a real financial problem: the prediction of bitcoin prices.</description><subject>Artificial intelligence</subject><subject>Decomposition</subject><subject>Explainable artificial intelligence</subject><subject>Lorenz Zonoids</subject><subject>Predictive accuracy</subject><subject>Shapley values</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKsB160nlzYpuBkGLwMDLlRwF9L0RFNqW5OOMj69LXXt6sDh_87lI-SSQkqB5td1ivHbpAzY2KCCgjgiC6okT3JZ8GOygCKTiaBSnJKzGGsAKgHkgrCnd9M3eEh2XcD2Z4WvfWN8a8oGV-sweOetN81q2w7YNP4NW4vn5MSZJuLFX12Sl7vb581Dsnu8327Wu8RyyYbElAKM5DxTKndZVZRQWY4lWnRgBFgULi9o5XgBPHc2s7K0JauUqJyiGQq-JFfz3D50n3uMg667fWjHlZplwKlkSqoxxeaUDV2MAZ3ug_8w4aAp6MmNrvXkRk9u9OxmhG5mCMf7vzwGHa2ffqt8QDvoqvP_4b8ermzr</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Giudici, Paolo</creator><creator>Raffinetti, Emanuela</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210401</creationdate><title>Shapley-Lorenz eXplainable Artificial Intelligence</title><author>Giudici, Paolo ; Raffinetti, Emanuela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-ab40a7335886f5d9b0dc3ebecef0a40ce4f691df39036fc5c7bcb2d84df815e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Decomposition</topic><topic>Explainable artificial intelligence</topic><topic>Lorenz Zonoids</topic><topic>Predictive accuracy</topic><topic>Shapley values</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giudici, Paolo</creatorcontrib><creatorcontrib>Raffinetti, Emanuela</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giudici, Paolo</au><au>Raffinetti, Emanuela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shapley-Lorenz eXplainable Artificial Intelligence</atitle><jtitle>Expert systems with applications</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>167</volume><spage>114104</spage><pages>114104-</pages><artnum>114104</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•A new global eXplainable Artificial Intelligence method is proposed.•Our method is based on the use of Shapley values and Lorenz Zonoid decomposition.•The derived variable importance criterion fulfills explainability requirement.•The application to bitcoin data shows the above mentioned advantages.
Explainability of artificial intelligence methods has become a crucial issue, especially in the most regulated fields, such as health and finance. In this paper, we provide a global explainable AI method which is based on Lorenz decompositions, thus extending previous contributions based on variance decompositions. This allows the resulting Shapley-Lorenz decomposition to be more generally applicable, and provides a unifying variable importance criterion that combines predictive accuracy with explainability, using a normalised and easy to interpret metric. The proposed decomposition is illustrated within the context of a real financial problem: the prediction of bitcoin prices.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2020.114104</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2021-04, Vol.167, p.114104, Article 114104 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_journals_2503172878 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Artificial intelligence Decomposition Explainable artificial intelligence Lorenz Zonoids Predictive accuracy Shapley values |
title | Shapley-Lorenz eXplainable Artificial Intelligence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shapley-Lorenz%20eXplainable%20Artificial%20Intelligence&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Giudici,%20Paolo&rft.date=2021-04-01&rft.volume=167&rft.spage=114104&rft.pages=114104-&rft.artnum=114104&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2020.114104&rft_dat=%3Cproquest_cross%3E2503172878%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503172878&rft_id=info:pmid/&rft_els_id=S0957417420308575&rfr_iscdi=true |