Shapley-Lorenz eXplainable Artificial Intelligence

•A new global eXplainable Artificial Intelligence method is proposed.•Our method is based on the use of Shapley values and Lorenz Zonoid decomposition.•The derived variable importance criterion fulfills explainability requirement.•The application to bitcoin data shows the above mentioned advantages....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2021-04, Vol.167, p.114104, Article 114104
Hauptverfasser: Giudici, Paolo, Raffinetti, Emanuela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•A new global eXplainable Artificial Intelligence method is proposed.•Our method is based on the use of Shapley values and Lorenz Zonoid decomposition.•The derived variable importance criterion fulfills explainability requirement.•The application to bitcoin data shows the above mentioned advantages. Explainability of artificial intelligence methods has become a crucial issue, especially in the most regulated fields, such as health and finance. In this paper, we provide a global explainable AI method which is based on Lorenz decompositions, thus extending previous contributions based on variance decompositions. This allows the resulting Shapley-Lorenz decomposition to be more generally applicable, and provides a unifying variable importance criterion that combines predictive accuracy with explainability, using a normalised and easy to interpret metric. The proposed decomposition is illustrated within the context of a real financial problem: the prediction of bitcoin prices.
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2020.114104