Spectral analysis of dispersive shocks for quantum hydrodynamics with nonlinear viscosity

In this paper we investigate spectral stability of traveling wave solutions to 1-\(D\) quantum hydrodynamics system with nonlinear viscosity in the \((\rho,u)\), that is, density and velocity, variables. We derive a sufficient condition for the stability of the essential spectrum and we estimate the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-03
Hauptverfasser: Lattanzio, Corrado, Zhelyazov, Delyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we investigate spectral stability of traveling wave solutions to 1-\(D\) quantum hydrodynamics system with nonlinear viscosity in the \((\rho,u)\), that is, density and velocity, variables. We derive a sufficient condition for the stability of the essential spectrum and we estimate the maximum modulus of eigenvalues with non-negative real part. In addition, we present numerical computations of the Evans function in sufficiently large domain of the unstable half-plane and show numerically that its winding number is (approximately) zero, thus giving a numerical evidence of point spectrum stability.
ISSN:2331-8422