Spectral analysis of dispersive shocks for quantum hydrodynamics with nonlinear viscosity
In this paper we investigate spectral stability of traveling wave solutions to 1-\(D\) quantum hydrodynamics system with nonlinear viscosity in the \((\rho,u)\), that is, density and velocity, variables. We derive a sufficient condition for the stability of the essential spectrum and we estimate the...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we investigate spectral stability of traveling wave solutions to 1-\(D\) quantum hydrodynamics system with nonlinear viscosity in the \((\rho,u)\), that is, density and velocity, variables. We derive a sufficient condition for the stability of the essential spectrum and we estimate the maximum modulus of eigenvalues with non-negative real part. In addition, we present numerical computations of the Evans function in sufficiently large domain of the unstable half-plane and show numerically that its winding number is (approximately) zero, thus giving a numerical evidence of point spectrum stability. |
---|---|
ISSN: | 2331-8422 |