CRAMÉR-TYPE MODERATE DEVIATION THEOREMS FOR NONNORMAL APPROXIMATION
A Cramér-type moderate deviation theorem quantifies the relative error of the tail probability approximation. It provides a criterion whether the limiting tail probability can be used to estimate the tail probability under study. Chen, Fang and Shao (2013) obtained a general Cramér-type moderate res...
Gespeichert in:
Veröffentlicht in: | The Annals of applied probability 2021-02, Vol.31 (1), p.247-283 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Cramér-type moderate deviation theorem quantifies the relative error of the tail probability approximation. It provides a criterion whether the limiting tail probability can be used to estimate the tail probability under study. Chen, Fang and Shao (2013) obtained a general Cramér-type moderate result using Stein’s method when the limiting was a normal distribution. In this paper, Cramér-type moderate deviation theorems are established for nonnormal approximation under a general Stein identity, which is satisfied via the exchangeable pair approach and Stein’s coupling. In particular, a Cramér-type moderate deviation theorem is obtained for the general Curie–Weiss model and the imitative monomer-dimer mean-field model. |
---|---|
ISSN: | 1050-5164 2168-8737 |
DOI: | 10.1214/20-AAP1589 |