CRAMÉR-TYPE MODERATE DEVIATION THEOREMS FOR NONNORMAL APPROXIMATION

A Cramér-type moderate deviation theorem quantifies the relative error of the tail probability approximation. It provides a criterion whether the limiting tail probability can be used to estimate the tail probability under study. Chen, Fang and Shao (2013) obtained a general Cramér-type moderate res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2021-02, Vol.31 (1), p.247-283
Hauptverfasser: Shao, Qi-Man, Zhang, Mengchen, Zhang, Zhuo-Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Cramér-type moderate deviation theorem quantifies the relative error of the tail probability approximation. It provides a criterion whether the limiting tail probability can be used to estimate the tail probability under study. Chen, Fang and Shao (2013) obtained a general Cramér-type moderate result using Stein’s method when the limiting was a normal distribution. In this paper, Cramér-type moderate deviation theorems are established for nonnormal approximation under a general Stein identity, which is satisfied via the exchangeable pair approach and Stein’s coupling. In particular, a Cramér-type moderate deviation theorem is obtained for the general Curie–Weiss model and the imitative monomer-dimer mean-field model.
ISSN:1050-5164
2168-8737
DOI:10.1214/20-AAP1589