0066 Glycinergic Postsynaptic Inhibition is Responsible for the Suppression of Hypoglossal Motoneuron Activity During Naturally-Occurring REM Sleep

Abstract Introduction The present study was undertaken to explore the role of glycinergic postsynaptic inhibition and monoaminergic disfacilitation (a withdrawal of excitatory noradrenergic and serotonergic inputs) in the control of hypoglossal motoneuron activity during REM sleep. Accordingly, glyc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sleep (New York, N.Y.) N.Y.), 2020-05, Vol.43 (Supplement_1), p.A27-A27
Hauptverfasser: Tobin, C, Fung, S J, Xi, M, Chase, M H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Introduction The present study was undertaken to explore the role of glycinergic postsynaptic inhibition and monoaminergic disfacilitation (a withdrawal of excitatory noradrenergic and serotonergic inputs) in the control of hypoglossal motoneuron activity during REM sleep. Accordingly, glycinergic, noradrenergic and serotonergic antagonists were microinjected into the hypoglossal nucleus, and their effects on the hypoglossal nerve activity during REM sleep were examined in chronically-instrumented, unanesthetized cats. Methods Adults cats were prepared for monitoring behavioral states of sleep and wakefulness, and for extracellular recordings from hypoglossal nerve. Strychnine (a glycinergic antagonist) and a mixture of prazosin (a noradrenergic antagonist) and methysergide (a serotonergic antagonist) were microinjected, separately, into the hypoglossal nucleus during naturally-occurring states of sleep and wakefulness. Results During REM sleep, compared to non-REM sleep, the hypoglossal nerve activity decreased by 17.4±1.5% (n=17) in the control recordings (prior to the injection of strychnine). Following the microinjection of strychnine, there was only a mean decrease of 7.2±1.2% (n=12) in the nerve activity during REM sleep versus NREM sleep. The strychnine effect was statistically significant compared to control (p
ISSN:0161-8105
1550-9109
DOI:10.1093/sleep/zsaa056.064