The Potential Implications of “Big Ag Data” for USDA Forecasts

Abstract The USDA produces yield and supply estimates for many crops that influence commodity markets and are used for implementing the Title I program, Agriculture Risk Coverage. Precision agriculture advances have increased the potential for the private sector to capture near-real time yield data,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied economic perspectives and policy 2019-12, Vol.41 (4), p.668-683
Hauptverfasser: Tack, Jesse, Coble, Keith H, Johansson, Robert, Harri, Ardian, Barnett, Barry J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The USDA produces yield and supply estimates for many crops that influence commodity markets and are used for implementing the Title I program, Agriculture Risk Coverage. Precision agriculture advances have increased the potential for the private sector to capture near-real time yield data, however, it is unclear whether they provide advantages in setting market positions since the samples are typically non-random. Here, we use yield histories from a large population of corn farms to quantify biases associated with different non-random sampling schemes for estimating aggregate yield, and demonstrate the effectiveness of benchmarking procedures for removing systematic prediction error.
ISSN:2040-5790
2040-5804
DOI:10.1093/aepp/ppy028