Run-up and inundation generated by non-decaying dam-break bores on a planar beach
Non-decaying bores are generated in a laboratory using a dam-break system with different reservoir length and depth ratios at the dam-break gate. The experimental data show the dependency of inundation depth, run-up height and flood duration on the reservoir length and the bore strength at the beach...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2021-03, Vol.915, Article A81 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Non-decaying bores are generated in a laboratory using a dam-break system with different reservoir length and depth ratios at the dam-break gate. The experimental data show the dependency of inundation depth, run-up height and flood duration on the reservoir length and the bore strength at the beach toe. Employing the method of characteristics, the relationship between the reservoir length and the bore characteristics at beach toe is obtained. Numerical simulations are carried out for a series of dam-break generated bores, extending the range of physical parameters used in the laboratory experiments. The accuracy of the numerical results is confirmed by the experimental data. Predictive formulae are then obtained for the inundation depth, run-up height and flood duration in terms of the bore characteristics at beach toe and beach slope. Finally, the minimum bore lengths at beach toe necessary to produce the maximum inundation depths and the flooding plateau are identified in the parameter space. These relations can be employed to design dam-break experiments for generating bores with a target length or duration. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2021.98 |