Some remarks on the Sobolev inequality in Riemannian manifolds

We investigate Sobolev and Hardy inequalities, specifically weighted Minerbe's type estimates, in noncompact complete connected Riemannian manifolds whose geometry is described by an isoperimetric profile. In particular, we assume that the manifold satisfies the \(p\)-hyperbolicity property, st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-03
Hauptverfasser: Andreucci, Daniele, Tedeev, Anatoli F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Andreucci, Daniele
Tedeev, Anatoli F
description We investigate Sobolev and Hardy inequalities, specifically weighted Minerbe's type estimates, in noncompact complete connected Riemannian manifolds whose geometry is described by an isoperimetric profile. In particular, we assume that the manifold satisfies the \(p\)-hyperbolicity property, stated in terms of a necessary integral Dini condition on the isoperimetric profile. Our method seems to us to combine sharply the knowledge of the isoperimetric profile and the optimal Bliss type Hardy inequality depending on the geometry of the manifold. We recover the well known best Sobolev constant in the Euclidean case.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2502512813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502512813</sourcerecordid><originalsourceid>FETCH-proquest_journals_25025128133</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_WPBcSDdGe_IiimfrvUTcYmqatUkr-Htz8AGeZmBmJjJUqiyqDeJC5DF2Ukrc7lBrlYl9zT1BoN6EZwT2MD4Iar6xozdYT8NknB0_SeFi0-W9NR4SbcvuHldi3hoXKf9xKdan4_VwLl6Bh4ni2HQ8BZ9Sg1qiLrEqlfrv-gK_HzhZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502512813</pqid></control><display><type>article</type><title>Some remarks on the Sobolev inequality in Riemannian manifolds</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Andreucci, Daniele ; Tedeev, Anatoli F</creator><creatorcontrib>Andreucci, Daniele ; Tedeev, Anatoli F</creatorcontrib><description>We investigate Sobolev and Hardy inequalities, specifically weighted Minerbe's type estimates, in noncompact complete connected Riemannian manifolds whose geometry is described by an isoperimetric profile. In particular, we assume that the manifold satisfies the \(p\)-hyperbolicity property, stated in terms of a necessary integral Dini condition on the isoperimetric profile. Our method seems to us to combine sharply the knowledge of the isoperimetric profile and the optimal Bliss type Hardy inequality depending on the geometry of the manifold. We recover the well known best Sobolev constant in the Euclidean case.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Euclidean geometry ; Manifolds (mathematics) ; Riemann manifold ; Theorems</subject><ispartof>arXiv.org, 2021-03</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Andreucci, Daniele</creatorcontrib><creatorcontrib>Tedeev, Anatoli F</creatorcontrib><title>Some remarks on the Sobolev inequality in Riemannian manifolds</title><title>arXiv.org</title><description>We investigate Sobolev and Hardy inequalities, specifically weighted Minerbe's type estimates, in noncompact complete connected Riemannian manifolds whose geometry is described by an isoperimetric profile. In particular, we assume that the manifold satisfies the \(p\)-hyperbolicity property, stated in terms of a necessary integral Dini condition on the isoperimetric profile. Our method seems to us to combine sharply the knowledge of the isoperimetric profile and the optimal Bliss type Hardy inequality depending on the geometry of the manifold. We recover the well known best Sobolev constant in the Euclidean case.</description><subject>Euclidean geometry</subject><subject>Manifolds (mathematics)</subject><subject>Riemann manifold</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNikEKwjAQAIMgWLR_WPBcSDdGe_IiimfrvUTcYmqatUkr-Htz8AGeZmBmJjJUqiyqDeJC5DF2Ukrc7lBrlYl9zT1BoN6EZwT2MD4Iar6xozdYT8NknB0_SeFi0-W9NR4SbcvuHldi3hoXKf9xKdan4_VwLl6Bh4ni2HQ8BZ9Sg1qiLrEqlfrv-gK_HzhZ</recordid><startdate>20210317</startdate><enddate>20210317</enddate><creator>Andreucci, Daniele</creator><creator>Tedeev, Anatoli F</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210317</creationdate><title>Some remarks on the Sobolev inequality in Riemannian manifolds</title><author>Andreucci, Daniele ; Tedeev, Anatoli F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25025128133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Euclidean geometry</topic><topic>Manifolds (mathematics)</topic><topic>Riemann manifold</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Andreucci, Daniele</creatorcontrib><creatorcontrib>Tedeev, Anatoli F</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreucci, Daniele</au><au>Tedeev, Anatoli F</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Some remarks on the Sobolev inequality in Riemannian manifolds</atitle><jtitle>arXiv.org</jtitle><date>2021-03-17</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We investigate Sobolev and Hardy inequalities, specifically weighted Minerbe's type estimates, in noncompact complete connected Riemannian manifolds whose geometry is described by an isoperimetric profile. In particular, we assume that the manifold satisfies the \(p\)-hyperbolicity property, stated in terms of a necessary integral Dini condition on the isoperimetric profile. Our method seems to us to combine sharply the knowledge of the isoperimetric profile and the optimal Bliss type Hardy inequality depending on the geometry of the manifold. We recover the well known best Sobolev constant in the Euclidean case.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2502512813
source Open Access: Freely Accessible Journals by multiple vendors
subjects Euclidean geometry
Manifolds (mathematics)
Riemann manifold
Theorems
title Some remarks on the Sobolev inequality in Riemannian manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A31%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Some%20remarks%20on%20the%20Sobolev%20inequality%20in%20Riemannian%20manifolds&rft.jtitle=arXiv.org&rft.au=Andreucci,%20Daniele&rft.date=2021-03-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2502512813%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502512813&rft_id=info:pmid/&rfr_iscdi=true