Some remarks on the Sobolev inequality in Riemannian manifolds
We investigate Sobolev and Hardy inequalities, specifically weighted Minerbe's type estimates, in noncompact complete connected Riemannian manifolds whose geometry is described by an isoperimetric profile. In particular, we assume that the manifold satisfies the \(p\)-hyperbolicity property, st...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Andreucci, Daniele Tedeev, Anatoli F |
description | We investigate Sobolev and Hardy inequalities, specifically weighted Minerbe's type estimates, in noncompact complete connected Riemannian manifolds whose geometry is described by an isoperimetric profile. In particular, we assume that the manifold satisfies the \(p\)-hyperbolicity property, stated in terms of a necessary integral Dini condition on the isoperimetric profile. Our method seems to us to combine sharply the knowledge of the isoperimetric profile and the optimal Bliss type Hardy inequality depending on the geometry of the manifold. We recover the well known best Sobolev constant in the Euclidean case. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2502512813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502512813</sourcerecordid><originalsourceid>FETCH-proquest_journals_25025128133</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_WPBcSDdGe_IiimfrvUTcYmqatUkr-Htz8AGeZmBmJjJUqiyqDeJC5DF2Ukrc7lBrlYl9zT1BoN6EZwT2MD4Iar6xozdYT8NknB0_SeFi0-W9NR4SbcvuHldi3hoXKf9xKdan4_VwLl6Bh4ni2HQ8BZ9Sg1qiLrEqlfrv-gK_HzhZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502512813</pqid></control><display><type>article</type><title>Some remarks on the Sobolev inequality in Riemannian manifolds</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Andreucci, Daniele ; Tedeev, Anatoli F</creator><creatorcontrib>Andreucci, Daniele ; Tedeev, Anatoli F</creatorcontrib><description>We investigate Sobolev and Hardy inequalities, specifically weighted Minerbe's type estimates, in noncompact complete connected Riemannian manifolds whose geometry is described by an isoperimetric profile. In particular, we assume that the manifold satisfies the \(p\)-hyperbolicity property, stated in terms of a necessary integral Dini condition on the isoperimetric profile. Our method seems to us to combine sharply the knowledge of the isoperimetric profile and the optimal Bliss type Hardy inequality depending on the geometry of the manifold. We recover the well known best Sobolev constant in the Euclidean case.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Euclidean geometry ; Manifolds (mathematics) ; Riemann manifold ; Theorems</subject><ispartof>arXiv.org, 2021-03</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Andreucci, Daniele</creatorcontrib><creatorcontrib>Tedeev, Anatoli F</creatorcontrib><title>Some remarks on the Sobolev inequality in Riemannian manifolds</title><title>arXiv.org</title><description>We investigate Sobolev and Hardy inequalities, specifically weighted Minerbe's type estimates, in noncompact complete connected Riemannian manifolds whose geometry is described by an isoperimetric profile. In particular, we assume that the manifold satisfies the \(p\)-hyperbolicity property, stated in terms of a necessary integral Dini condition on the isoperimetric profile. Our method seems to us to combine sharply the knowledge of the isoperimetric profile and the optimal Bliss type Hardy inequality depending on the geometry of the manifold. We recover the well known best Sobolev constant in the Euclidean case.</description><subject>Euclidean geometry</subject><subject>Manifolds (mathematics)</subject><subject>Riemann manifold</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNikEKwjAQAIMgWLR_WPBcSDdGe_IiimfrvUTcYmqatUkr-Htz8AGeZmBmJjJUqiyqDeJC5DF2Ukrc7lBrlYl9zT1BoN6EZwT2MD4Iar6xozdYT8NknB0_SeFi0-W9NR4SbcvuHldi3hoXKf9xKdan4_VwLl6Bh4ni2HQ8BZ9Sg1qiLrEqlfrv-gK_HzhZ</recordid><startdate>20210317</startdate><enddate>20210317</enddate><creator>Andreucci, Daniele</creator><creator>Tedeev, Anatoli F</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210317</creationdate><title>Some remarks on the Sobolev inequality in Riemannian manifolds</title><author>Andreucci, Daniele ; Tedeev, Anatoli F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25025128133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Euclidean geometry</topic><topic>Manifolds (mathematics)</topic><topic>Riemann manifold</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Andreucci, Daniele</creatorcontrib><creatorcontrib>Tedeev, Anatoli F</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreucci, Daniele</au><au>Tedeev, Anatoli F</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Some remarks on the Sobolev inequality in Riemannian manifolds</atitle><jtitle>arXiv.org</jtitle><date>2021-03-17</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We investigate Sobolev and Hardy inequalities, specifically weighted Minerbe's type estimates, in noncompact complete connected Riemannian manifolds whose geometry is described by an isoperimetric profile. In particular, we assume that the manifold satisfies the \(p\)-hyperbolicity property, stated in terms of a necessary integral Dini condition on the isoperimetric profile. Our method seems to us to combine sharply the knowledge of the isoperimetric profile and the optimal Bliss type Hardy inequality depending on the geometry of the manifold. We recover the well known best Sobolev constant in the Euclidean case.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2502512813 |
source | Open Access: Freely Accessible Journals by multiple vendors |
subjects | Euclidean geometry Manifolds (mathematics) Riemann manifold Theorems |
title | Some remarks on the Sobolev inequality in Riemannian manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A31%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Some%20remarks%20on%20the%20Sobolev%20inequality%20in%20Riemannian%20manifolds&rft.jtitle=arXiv.org&rft.au=Andreucci,%20Daniele&rft.date=2021-03-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2502512813%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502512813&rft_id=info:pmid/&rfr_iscdi=true |