Some remarks on the Sobolev inequality in Riemannian manifolds
We investigate Sobolev and Hardy inequalities, specifically weighted Minerbe's type estimates, in noncompact complete connected Riemannian manifolds whose geometry is described by an isoperimetric profile. In particular, we assume that the manifold satisfies the \(p\)-hyperbolicity property, st...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate Sobolev and Hardy inequalities, specifically weighted Minerbe's type estimates, in noncompact complete connected Riemannian manifolds whose geometry is described by an isoperimetric profile. In particular, we assume that the manifold satisfies the \(p\)-hyperbolicity property, stated in terms of a necessary integral Dini condition on the isoperimetric profile. Our method seems to us to combine sharply the knowledge of the isoperimetric profile and the optimal Bliss type Hardy inequality depending on the geometry of the manifold. We recover the well known best Sobolev constant in the Euclidean case. |
---|---|
ISSN: | 2331-8422 |