Reconstructed Water Oxidation Electrocatalysts: The Impact of Surface Dynamics on Intrinsic Activities
Electroreduction of small molecules such as H2O, CO2, and N2 for producing clean fuels or valuable chemicals provides a sustainable approach to meet the increasing global energy demands and to alleviate the concern on climate change resulting from fossil fuel consumption. On the path to implement th...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-03, Vol.31 (12), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electroreduction of small molecules such as H2O, CO2, and N2 for producing clean fuels or valuable chemicals provides a sustainable approach to meet the increasing global energy demands and to alleviate the concern on climate change resulting from fossil fuel consumption. On the path to implement this purpose, however, several scientific hurdles remain, one of which is the low energy efficiency due to the sluggish kinetics of the paired oxygen evolution reaction (OER). In response, it is highly desirable to synthesize high‐performance and cost‐effective OER electrocatalysts. Recent advances have witnessed surface reconstruction engineering as a salient tool to significantly improve the catalytic performance of OER electrocatalysts. In this review, recent progress on the reconstructed OER electrocatalysts and future opportunities are discussed. A brief introduction of the fundamentals of OER and the experimental approaches for generating and characterizing the reconstructed active sites in OER nanocatalysts are given first, followed by an expanded discussion of recent advances on the reconstructed OER electrocatalysts with improved activities, with a particular emphasis on understanding the correlation between surface dynamics and activities. Finally, a prospect for clean future energy communities harnessing surface reconstruction‐promoted electrochemical water oxidation will be provided.
During water splitting, the water oxidation condition reconstructs the electrocatalyst surface and concurrently enhances the performance and durability. To address the surface dynamics of the electrocatalyst and importance of reconstruction process under oxygen evolution reaction (OER) condition, in this review, the fundamentals of OER, origin of surface reconstruction, and comprehensive discussion on the experimental approaches for the electrocatalyst surface reconstruction are presented. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.202008190 |