Compression artifacts reduction with multiscale tensor regularization

We study a multiscale tensor regularization based JPEG decompression artifact removal in digital images. Structure tensor eigenvalues based robust edge map is used within a variable exponent regularization. Variational constrained minimization which combines data fidelity driven by color subsampling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multidimensional systems and signal processing 2021-04, Vol.32 (2), p.521-531
Hauptverfasser: Surya Prasath, V. B., Thanh, Dang N. H., Hieu, Le Minh, Thanh, Le Thi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a multiscale tensor regularization based JPEG decompression artifact removal in digital images. Structure tensor eigenvalues based robust edge map is used within a variable exponent regularization. Variational constrained minimization which combines data fidelity driven by color subsampling and discrete cosine transformation operator is utilized. Experimental results across different compression levels and with various error metrics indicate our proposed method obtains high quality results on cartoon/clip-art and LIVE1 natural image databases.
ISSN:0923-6082
1573-0824
DOI:10.1007/s11045-020-00747-8