Compression artifacts reduction with multiscale tensor regularization
We study a multiscale tensor regularization based JPEG decompression artifact removal in digital images. Structure tensor eigenvalues based robust edge map is used within a variable exponent regularization. Variational constrained minimization which combines data fidelity driven by color subsampling...
Gespeichert in:
Veröffentlicht in: | Multidimensional systems and signal processing 2021-04, Vol.32 (2), p.521-531 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study a multiscale tensor regularization based JPEG decompression artifact removal in digital images. Structure tensor eigenvalues based robust edge map is used within a variable exponent regularization. Variational constrained minimization which combines data fidelity driven by color subsampling and discrete cosine transformation operator is utilized. Experimental results across different compression levels and with various error metrics indicate our proposed method obtains high quality results on cartoon/clip-art and LIVE1 natural image databases. |
---|---|
ISSN: | 0923-6082 1573-0824 |
DOI: | 10.1007/s11045-020-00747-8 |