Asymptotics of Fredholm Determinant Associated with the Pearcey Kernel

The Pearcey kernel is a classical and universal kernel arising from random matrix theory, which describes the local statistics of eigenvalues when the limiting mean eigenvalue density exhibits a cusp-like singularity. It appears in a variety of statistical physics models beyond matrix models as well...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2021-03, Vol.382 (3), p.1769-1809
Hauptverfasser: Dai, Dan, Xu, Shuai-Xia, Zhang, Lun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Pearcey kernel is a classical and universal kernel arising from random matrix theory, which describes the local statistics of eigenvalues when the limiting mean eigenvalue density exhibits a cusp-like singularity. It appears in a variety of statistical physics models beyond matrix models as well. We consider the Fredholm determinant of a trace class operator acting on L 2 - s , s with the Pearcey kernel. Based on a steepest descent analysis for a 3 × 3 matrix-valued Riemann-Hilbert problem, we obtain asymptotics of the Fredholm determinant as s → + ∞ , which is also interpreted as large gap asymptotics in the context of random matrix theory.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-021-03986-3