A Stochastic Variance Reduction Algorithm with Bregman Distances for Structured Composite Problems

We develop a novel stochastic primal dual splitting method with Bregman distances for solving a structured composite problems involving infimal convolutions in non-Euclidean spaces. The sublinear convergence in expectation of the primal-dual gap is proved under mild conditions on stepsize for the ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-03
Hauptverfasser: Nguyen Van Dung, Vũ, Băng Công
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a novel stochastic primal dual splitting method with Bregman distances for solving a structured composite problems involving infimal convolutions in non-Euclidean spaces. The sublinear convergence in expectation of the primal-dual gap is proved under mild conditions on stepsize for the general case. The linear convergence rate is obtained under additional condition like the strong convexity relative to Bregman functions.
ISSN:2331-8422