A Stochastic Variance Reduction Algorithm with Bregman Distances for Structured Composite Problems
We develop a novel stochastic primal dual splitting method with Bregman distances for solving a structured composite problems involving infimal convolutions in non-Euclidean spaces. The sublinear convergence in expectation of the primal-dual gap is proved under mild conditions on stepsize for the ge...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop a novel stochastic primal dual splitting method with Bregman distances for solving a structured composite problems involving infimal convolutions in non-Euclidean spaces. The sublinear convergence in expectation of the primal-dual gap is proved under mild conditions on stepsize for the general case. The linear convergence rate is obtained under additional condition like the strong convexity relative to Bregman functions. |
---|---|
ISSN: | 2331-8422 |