Variational Quantum Algorithms for Euclidean Discrepancy and Covariate-Balancing

Algorithmic discrepancy theory seeks efficient algorithms to find those two-colorings of a set that minimize a given measure of coloring imbalance in the set, its {\it discrepancy}. The {\it Euclidean discrepancy} problem and the problem of balancing covariates in randomized trials have efficient ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-03
Hauptverfasser: Lebl, Jiří, Asif Shakeel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Algorithmic discrepancy theory seeks efficient algorithms to find those two-colorings of a set that minimize a given measure of coloring imbalance in the set, its {\it discrepancy}. The {\it Euclidean discrepancy} problem and the problem of balancing covariates in randomized trials have efficient randomized algorithms based on the Gram-Schmidt walk (GSW). We frame these problems as quantum Ising models, for which variational quantum algorithms (VQA) are particularly useful. Simulating an example of covariate-balancing on an IBM quantum simulator, we find that the variational quantum eigensolver (VQE) and the quantum approximate optimization algorithm (QAOA) yield results comparable to the GSW algorithm.
ISSN:2331-8422