Variational Quantum Algorithms for Euclidean Discrepancy and Covariate-Balancing
Algorithmic discrepancy theory seeks efficient algorithms to find those two-colorings of a set that minimize a given measure of coloring imbalance in the set, its {\it discrepancy}. The {\it Euclidean discrepancy} problem and the problem of balancing covariates in randomized trials have efficient ra...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Algorithmic discrepancy theory seeks efficient algorithms to find those two-colorings of a set that minimize a given measure of coloring imbalance in the set, its {\it discrepancy}. The {\it Euclidean discrepancy} problem and the problem of balancing covariates in randomized trials have efficient randomized algorithms based on the Gram-Schmidt walk (GSW). We frame these problems as quantum Ising models, for which variational quantum algorithms (VQA) are particularly useful. Simulating an example of covariate-balancing on an IBM quantum simulator, we find that the variational quantum eigensolver (VQE) and the quantum approximate optimization algorithm (QAOA) yield results comparable to the GSW algorithm. |
---|---|
ISSN: | 2331-8422 |