Altitudinal-modulated sediment inputs rather than the land-uses determine the distribution of lead in the riparian soils of the Three Gorges Reservoir

Lead (Pb) as a toxic metal has potential ecological hazards for aquatic quality. However, the variation in the distribution patterns of Pb and its fractions in flooding soils with frequent and anti-seasonal water-level fluctuation and various human disturbances remains unclear. In this study, the di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental geochemistry and health 2021-03, Vol.43 (3), p.1123-1136
Hauptverfasser: Qiu, Shaojun, Bing, Haijian, Zhong, Zhilin, Wu, Yanhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lead (Pb) as a toxic metal has potential ecological hazards for aquatic quality. However, the variation in the distribution patterns of Pb and its fractions in flooding soils with frequent and anti-seasonal water-level fluctuation and various human disturbances remains unclear. In this study, the distribution of Pb and its fractions in the riparian soils of the Three Gorges Reservoir (TGR) were delineated based on the differences in altitude and land-uses including farmland, orchard, forest and residential area. Then, we assessed the contamination and eco-risk of Pb in the soils and deciphered the key factors determining the distribution of Pb and its fractions. The results showed that the concentrations of Pb and its fractions in the soils decreased significantly with altitude, while the significant difference was not observed among the land-uses. The contamination of Pb in the soils reached a moderate level, and its eco-risk was very low by the potential eco-risk index and mobile Pb fraction. The source of soil Pb at the upper zone (> 160 m) was mainly from natural inputs, while the source at the lower zone (≤ 160 m) was attributed to anthropogenic contributions including ores mining, fossil fuel combustion, vehicle emissions and atmospheric deposition indicated by Pb isotopic ratios. With the limited effect of land-uses, the sediment inputs regulated by frequent water-level fluctuation determined the altitudinal distribution of Pb and its fractions in the flooding soils. The soil particle size dominated the migration and transformation of Pb over other soil properties such as pH and organic matters. The results of this study indicate that the anthropogenic Pb mainly exists in the soils of lower riparian zone in the TGR, and the frequent and anti-seasonal dry and rewetting alternation aggravates the potential for the Pb migration downstream due to the determinant of soil particles.
ISSN:0269-4042
1573-2983
DOI:10.1007/s10653-020-00579-2