On the zeros of certain composite polynomials and an operator preserving inequalities
If all the zeros of n th degree polynomials f ( z ) and g ( z ) = ∑ k = 0 n λ k n k z k respectively lie in the cricular regions | z | ≤ r and | z | ≤ s | z - σ | , s > 0 , then it was proved by Marden (Geometry of polynomials, Math Surveys, No. 3, American Mathematical Society, Providence, 1949,...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2021-04, Vol.54 (3), p.605-612 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | If all the zeros of
n
th degree polynomials
f
(
z
) and
g
(
z
)
=
∑
k
=
0
n
λ
k
n
k
z
k
respectively lie in the cricular regions
|
z
|
≤
r
and
|
z
|
≤
s
|
z
-
σ
|
,
s
>
0
, then it was proved by Marden (Geometry of polynomials, Math Surveys, No. 3, American Mathematical Society, Providence, 1949, p. 86) that all the zeros of the polynomial
h
(
z
)
=
∑
k
=
0
n
λ
k
f
(
k
)
(
z
)
(
σ
z
)
k
k
!
lie in the circle
|
z
|
≤
r
max
(
1
,
s
)
. In this paper, we relax the condition that
f
(
z
) and
g
(
z
) are of the same degree and instead assume that
f
(
z
) and
g
(
z
) are polynomials of arbitrary degree
n
and
m
, respectively,
m
≤
n
,
and obtain a generalization of this result. As an application, we also introduce a linear operator which preserves Bernstein type polynomial inequalities. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-020-00261-2 |