Quantification of insecticide spatial distribution within individual citrus trees and efficacy through Asian citrus psyllid reductions under different application methods

BACKGROUND Citrus greening disease (Huanglongbing, HLB) has infected >90% of Florida's oranges and thus growers are desperate to improve pest management strategies. In this field study, insecticide application efficacy was investigated with liquid chromatography mass spectrometry to determin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pest management science 2021-04, Vol.77 (4), p.1748-1756
Hauptverfasser: Rehberg, Rachelle A, Trivedi, Pankaj, Bahureksa, William, Sharp, Julia L, Stokes, Sean C, Menger, Ruth F, Borch, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND Citrus greening disease (Huanglongbing, HLB) has infected >90% of Florida's oranges and thus growers are desperate to improve pest management strategies. In this field study, insecticide application efficacy was investigated with liquid chromatography mass spectrometry to determine if insecticide concentration and distribution were effective at killing the target pest Asian citrus psyllids (ACP). Sample discs attached to leaves were sprayed with imidacloprid and malathion at a field site in Florida. Application method, canopy height and depth, cardinal side of tree, and leaf side were considered to assess the spatial distribution of insecticides throughout citrus trees. Furthermore, ACP were inspected before and after insecticide applications to quantify psyllid population response. RESULTS Our findings show that although insecticide concentrations were high enough to kill ACP, the spatial distribution of insecticides throughout individual trees was highly variable and live ACP were detected after insecticide application. The top side of leaves received significantly more insecticide than the underside of leaves. Additionally, inadequate distribution to different areas of the tree canopy was observed for all application methods tested (aerial, ground speed‐sprayer, and ground side‐sprayer). Inspections of ACP populations before and after insecticide applications resulted in reductions of 85% (malathion) and 48–80% (imidacloprid). CONCLUSIONS The variability in insecticide spatial distribution due to application method allows remaining ACP to continue spreading citrus greening disease to unprotected trees. Further research is needed to improve insecticide application methods and technology for citrus trees in order to implement effective pest management strategies and fully target ACP to eliminate HLB. © 2020 Society of Chemical Industry Results showed inadequate insecticide distribution and psyllid reductions after both ground and aerial applications. © 2020 Society of Chemical Industry
ISSN:1526-498X
1526-4998
DOI:10.1002/ps.6195