Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering

[Display omitted] •The AQI forecasting model uses deep learning and spatiotemporal clustering.•The multiple-site forecasting models were developed for the next 1–6 h.•The overall forecasting for all the stations in Beijing through LSTM is optimal.•Seasonal or spatial clustering-based forecasting is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2021-05, Vol.169, p.114513, Article 114513
Hauptverfasser: Yan, Rui, Liao, Jiaqiang, Yang, Jie, Sun, Wei, Nong, Mingyue, Li, Feipeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!