Optimally Stopping at a Given Distance from the Ultimate Supremum of a Spectrally Negative Lévy Process
We consider the optimal prediction problem of stopping a spectrally negative Lévy process as close as possible to a given distance $b \geq 0$ from its ultimate supremum, under a squared-error penalty function. Under some mild conditions, the solution is fully and explicitly characterised in terms of...
Gespeichert in:
Veröffentlicht in: | Advances in applied probability 2021-03, Vol.53 (1), p.279-299 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the optimal prediction problem of stopping a spectrally negative Lévy process as close as possible to a given distance $b \geq 0$ from its ultimate supremum, under a squared-error penalty function. Under some mild conditions, the solution is fully and explicitly characterised in terms of scale functions. We find that the solution has an interesting non-trivial structure: if b is larger than a certain threshold then it is optimal to stop as soon as the difference between the running supremum and the position of the process exceeds a certain level (less than b), while if b is smaller than this threshold then it is optimal to stop immediately (independent of the running supremum and position of the process). We also present some examples. |
---|---|
ISSN: | 0001-8678 1475-6064 |
DOI: | 10.1017/apr.2020.54 |