Can Coherent Predictions be Contradictory?

We prove the sharp bound for the probability that two experts who have access to different information, represented by different $\sigma$-fields, will give radically different estimates of the probability of an event. This is relevant when one combines predictions from various experts in a common pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 2021-03, Vol.53 (1), p.133-161
Hauptverfasser: Burdzy, Krzysztof, Pal, Soumik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 161
container_issue 1
container_start_page 133
container_title Advances in applied probability
container_volume 53
creator Burdzy, Krzysztof
Pal, Soumik
description We prove the sharp bound for the probability that two experts who have access to different information, represented by different $\sigma$-fields, will give radically different estimates of the probability of an event. This is relevant when one combines predictions from various experts in a common probability space to obtain an aggregated forecast. The optimizer for the bound is explicitly described. This paper was originally titled ‘Contradictory predictions’.
doi_str_mv 10.1017/apr.2020.51
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2501779676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_apr_2020_51</cupid><jstor_id>48654535</jstor_id><sourcerecordid>48654535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-c025b9f64278e71d901cf14bb203c472b6f6965a9b0fbd315c23ad641d314c753</originalsourceid><addsrcrecordid>eNptkEtLxDAUhYMoWEdXroUBd0rHe_NsVyLFFwzoQtchSVPt4LQ16Szm35syg25c3Qcf53AOIecICwRUN2YICwoUFgIPSIZciVyC5IckAwDMC6mKY3IS4yqdTBWQkavKdPOq__TBd-P8Nfi6dWPbd3Fuffp3YzDTpw_b21Ny1Jiv6M_2c0beH-7fqqd8-fL4XN0tc8cojrkDKmzZSE5V4RXWJaBrkFtLgTmuqJWNLKUwpYXG1gyFo8zUkmPauVOCzcjlTncI_ffGx1Gv-k3okqWmIqVUpVQyUdc7yoU-xuAbPYR2bcJWI-ipDJ3K0FMZWmCiL3b0KqYsvygvpOCCTZ75Xs2sbWjrD_9n-p_eD7WlaGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501779676</pqid></control><display><type>article</type><title>Can Coherent Predictions be Contradictory?</title><source>Cambridge University Press Journals Complete</source><creator>Burdzy, Krzysztof ; Pal, Soumik</creator><creatorcontrib>Burdzy, Krzysztof ; Pal, Soumik</creatorcontrib><description>We prove the sharp bound for the probability that two experts who have access to different information, represented by different $\sigma$-fields, will give radically different estimates of the probability of an event. This is relevant when one combines predictions from various experts in a common probability space to obtain an aggregated forecast. The optimizer for the bound is explicitly described. This paper was originally titled ‘Contradictory predictions’.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.1017/apr.2020.51</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Decision theory ; Information sources ; Original Article ; Original Articles ; Probability ; Random variables</subject><ispartof>Advances in applied probability, 2021-03, Vol.53 (1), p.133-161</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press on behalf of Applied Probability Trust</rights><rights>The Author(s), 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-c025b9f64278e71d901cf14bb203c472b6f6965a9b0fbd315c23ad641d314c753</citedby><cites>FETCH-LOGICAL-c321t-c025b9f64278e71d901cf14bb203c472b6f6965a9b0fbd315c23ad641d314c753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0001867820000518/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27922,27923,55626</link.rule.ids></links><search><creatorcontrib>Burdzy, Krzysztof</creatorcontrib><creatorcontrib>Pal, Soumik</creatorcontrib><title>Can Coherent Predictions be Contradictory?</title><title>Advances in applied probability</title><addtitle>Adv. Appl. Probab</addtitle><description>We prove the sharp bound for the probability that two experts who have access to different information, represented by different $\sigma$-fields, will give radically different estimates of the probability of an event. This is relevant when one combines predictions from various experts in a common probability space to obtain an aggregated forecast. The optimizer for the bound is explicitly described. This paper was originally titled ‘Contradictory predictions’.</description><subject>Decision theory</subject><subject>Information sources</subject><subject>Original Article</subject><subject>Original Articles</subject><subject>Probability</subject><subject>Random variables</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkEtLxDAUhYMoWEdXroUBd0rHe_NsVyLFFwzoQtchSVPt4LQ16Szm35syg25c3Qcf53AOIecICwRUN2YICwoUFgIPSIZciVyC5IckAwDMC6mKY3IS4yqdTBWQkavKdPOq__TBd-P8Nfi6dWPbd3Fuffp3YzDTpw_b21Ny1Jiv6M_2c0beH-7fqqd8-fL4XN0tc8cojrkDKmzZSE5V4RXWJaBrkFtLgTmuqJWNLKUwpYXG1gyFo8zUkmPauVOCzcjlTncI_ffGx1Gv-k3okqWmIqVUpVQyUdc7yoU-xuAbPYR2bcJWI-ipDJ3K0FMZWmCiL3b0KqYsvygvpOCCTZ75Xs2sbWjrD_9n-p_eD7WlaGA</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Burdzy, Krzysztof</creator><creator>Pal, Soumik</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>202103</creationdate><title>Can Coherent Predictions be Contradictory?</title><author>Burdzy, Krzysztof ; Pal, Soumik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-c025b9f64278e71d901cf14bb203c472b6f6965a9b0fbd315c23ad641d314c753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Decision theory</topic><topic>Information sources</topic><topic>Original Article</topic><topic>Original Articles</topic><topic>Probability</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burdzy, Krzysztof</creatorcontrib><creatorcontrib>Pal, Soumik</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burdzy, Krzysztof</au><au>Pal, Soumik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can Coherent Predictions be Contradictory?</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Adv. Appl. Probab</addtitle><date>2021-03</date><risdate>2021</risdate><volume>53</volume><issue>1</issue><spage>133</spage><epage>161</epage><pages>133-161</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><abstract>We prove the sharp bound for the probability that two experts who have access to different information, represented by different $\sigma$-fields, will give radically different estimates of the probability of an event. This is relevant when one combines predictions from various experts in a common probability space to obtain an aggregated forecast. The optimizer for the bound is explicitly described. This paper was originally titled ‘Contradictory predictions’.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/apr.2020.51</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-8678
ispartof Advances in applied probability, 2021-03, Vol.53 (1), p.133-161
issn 0001-8678
1475-6064
language eng
recordid cdi_proquest_journals_2501779676
source Cambridge University Press Journals Complete
subjects Decision theory
Information sources
Original Article
Original Articles
Probability
Random variables
title Can Coherent Predictions be Contradictory?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20Coherent%20Predictions%20be%20Contradictory?&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Burdzy,%20Krzysztof&rft.date=2021-03&rft.volume=53&rft.issue=1&rft.spage=133&rft.epage=161&rft.pages=133-161&rft.issn=0001-8678&rft.eissn=1475-6064&rft_id=info:doi/10.1017/apr.2020.51&rft_dat=%3Cjstor_proqu%3E48654535%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501779676&rft_id=info:pmid/&rft_cupid=10_1017_apr_2020_51&rft_jstor_id=48654535&rfr_iscdi=true