Maximum Number of Steps of Topswops on 18 and 19 Cards

Let \(f(n)\) be the maximum number of steps of Topswops on \(n\) cards. In this note, we report our computational experiments to determine the values of \(f(18)\) and \(f(19)\). By applying an algorithm developed by Knuth in a parallel fashion, we conclude that \(f(18)=191\) and \(f(19)=221\).

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-03
Hauptverfasser: Kimura, Kento, Takahashi, Atsuki, Araki, Tetsuya, Amano, Kazuyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(f(n)\) be the maximum number of steps of Topswops on \(n\) cards. In this note, we report our computational experiments to determine the values of \(f(18)\) and \(f(19)\). By applying an algorithm developed by Knuth in a parallel fashion, we conclude that \(f(18)=191\) and \(f(19)=221\).
ISSN:2331-8422