Maximum Number of Steps of Topswops on 18 and 19 Cards
Let \(f(n)\) be the maximum number of steps of Topswops on \(n\) cards. In this note, we report our computational experiments to determine the values of \(f(18)\) and \(f(19)\). By applying an algorithm developed by Knuth in a parallel fashion, we conclude that \(f(18)=191\) and \(f(19)=221\).
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-03 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(f(n)\) be the maximum number of steps of Topswops on \(n\) cards. In this note, we report our computational experiments to determine the values of \(f(18)\) and \(f(19)\). By applying an algorithm developed by Knuth in a parallel fashion, we conclude that \(f(18)=191\) and \(f(19)=221\). |
---|---|
ISSN: | 2331-8422 |