Ensemble sampler for infinite-dimensional inverse problems

We introduce a new Markov chain Monte Carlo (MCMC) sampler for infinite-dimensional inverse problems. Our new sampler is based on the affine invariant ensemble sampler, which uses interacting walkers to adapt to the covariance structure of the target distribution. We extend this ensemble sampler for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics and computing 2021-04, Vol.31 (3), Article 28
Hauptverfasser: Coullon, Jeremie, Webber, Robert J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a new Markov chain Monte Carlo (MCMC) sampler for infinite-dimensional inverse problems. Our new sampler is based on the affine invariant ensemble sampler, which uses interacting walkers to adapt to the covariance structure of the target distribution. We extend this ensemble sampler for the first time to infinite-dimensional function spaces, yielding a highly efficient gradient-free MCMC algorithm. Because our new ensemble sampler does not require gradients or posterior covariance estimates, it is simple to implement and broadly applicable.
ISSN:0960-3174
1573-1375
DOI:10.1007/s11222-021-10004-y