Electrocatalytic hydrogen peroxide production in acidic media enabled by NiS2 nanosheets

The selective two-electron O2 reduction reaction (2e− ORR) represents a green, mild, and on-site means of synthesizing H2O2. However, its practical feasibility depends on the development of advanced electrocatalysts, and limited experimental work has been done on non-precious-metal-based materials f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-01, Vol.9 (10), p.6117-6122
Hauptverfasser: Liang, Jie, Wang, Yuanyuan, Liu, Qian, Luo, Yonglan, Li, Tingshuai, Zhao, Haitao, Lu, Siyu, Zhang, Fang, Asiri, Abdullah M, Liu, Fenggang, Ma, Dongwei, Sun, Xuping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The selective two-electron O2 reduction reaction (2e− ORR) represents a green, mild, and on-site means of synthesizing H2O2. However, its practical feasibility depends on the development of advanced electrocatalysts, and limited experimental work has been done on non-precious-metal-based materials for the H2O2 electrogeneration in acids. Our study here introduces NiS2 nanosheets for the first time as an efficient electrocatalyst for the 2e− ORR under acidic conditions. In 0.05 M H2SO4, the NiS2 catalyst shows an onset overpotential of ∼130 mV and offers high selectivity (H2O2 percentage up to 99%). Moreover, the NiS2 catalyst attains the largest faradaic efficiency of 98% and the highest H2O2 yield rate of 109 ppm h−1 at 0.456 V and 0.156 V in the H-cell testing, respectively. The catalytic mechanism is revealed by theoretical calculations.
ISSN:2050-7488
2050-7496
DOI:10.1039/d0ta12008a