Mesoscopic models for electrohydrodynamic interactions of polyelectrolytes

Two mean-field models for polyelectrolytes in simultaneous electric field and pressure-driven flow field were developed and compared. The models predict migration perpendicular to the anti-parallel or parallel fields, where the migration is caused by electrohydrodynamic interactions calculated using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2021-05, Vol.915, Article A59
Hauptverfasser: Kopelevich, Dmitry I., He, Shujun, Montes, Ryan J., Butler, Jason E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two mean-field models for polyelectrolytes in simultaneous electric field and pressure-driven flow field were developed and compared. The models predict migration perpendicular to the anti-parallel or parallel fields, where the migration is caused by electrohydrodynamic interactions calculated using either a short- or long-range approximation. Inputs for the mean-field models were determined from Brownian dynamics simulations in a simple shear flow. Both models qualitatively reproduce experimental observations of DNA focusing as reported in previous publications. Specifically, it is observed that combination of the shear and electric fields leads to polyelectrolyte motion in the direction transverse to the flow and electric field direction, which in turn leads to concentration of the polyelectrolyte in the centre of a microfluidic channel. Furthermore, both models predict that there is an optimal strength of electric field that leads to the narrowest distribution profile of the polyelectrolyte in the centre of the channel. The analysis suggests that this is due to dispersion induced by the electrohydrodynamic interactions. However, quantitative disagreement between the model predictions and the experimental data indicates that further progress in the model development is needed.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2021.11