A trajectory restoration algorithm for low-sampling-rate floating car data and complex urban road networks

Low-sampling-rate floating car data (FCD) are more challenging than those with high-sampling-rate FCD for map matching (MM) algorithms. Some MM algorithms for low-sampling-rate FCD lack sufficient efficiency nor accuracy, especially related to complex urban road networks. This paper proposes a new m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of geographical information science : IJGIS 2021-04, Vol.35 (4), p.717-740
Hauptverfasser: Li, Bozhao, Cai, Zhongliang, Kang, Mengjun, Su, Shiliang, Zhang, Shanshan, Jiang, Lili, Ge, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low-sampling-rate floating car data (FCD) are more challenging than those with high-sampling-rate FCD for map matching (MM) algorithms. Some MM algorithms for low-sampling-rate FCD lack sufficient efficiency nor accuracy, especially related to complex urban road networks. This paper proposes a new method named the trajectory restoration algorithm, which is based on geometry MM algorithms to ensure efficiency and accuracy. The proposed algorithm adopts the modified A* shortest path algorithm to reduce the number of function calls and fully considers road network topology and historical matched points to improve its accuracy. We test the efficiency and accuracy of the trajectory restoration algorithm with FCD data for the complex urban road networks in Beijing. The results have strong continuity which greatly improves the utilization of FCD. We show that the proposed algorithm outperforms related MM methods in efficiency and accuracy and its robustness to restore trajectories of both high and low sampling rates in complex urban road networks.
ISSN:1365-8816
1362-3087
1365-8824
DOI:10.1080/13658816.2020.1825721