CEDULE+: Resource Management for Burstable Cloud Instances Using Predictive Analytics

Nearly all principal cloud providers now provide burstable instances in their offerings. The main attraction of this type of instance is that it can boost its performance for a limited time to cope with workload variations. Although burstable instances are widely adopted, it is not clear how to effi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2021-03, Vol.18 (1), p.945-957
Hauptverfasser: Pinciroli, Riccardo, Ali, Ahsan, Yan, Feng, Smirni, Evgenia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nearly all principal cloud providers now provide burstable instances in their offerings. The main attraction of this type of instance is that it can boost its performance for a limited time to cope with workload variations. Although burstable instances are widely adopted, it is not clear how to efficiently manage them to avoid waste of resources. In this article, we use predictive data analytics to optimize the management of burstable instances. We design CEDULE+, a data-driven framework that enables efficient resource management for burstable cloud instances by analyzing the system workload and latency data. CEDULE+ selects the most profitable instance type to process incoming requests and controls CPU, I/O, and network usage to minimize the resource waste without violating Service Level Objectives (SLOs). CEDULE+ uses lightweight profiling and quantile regression to build a data-driven prediction model that estimates system performance for all combinations of instance type, resource type, and system workload. CEDULE+ is evaluated on Amazon EC2, and its efficiency and high accuracy are assessed through real-case scenarios. CEDULE+ predicts application latency with errors less than 10%, extends the maximum performance period of a burstable instance up to 2.4 times, and decreases deployment costs by more than 50%.
ISSN:1932-4537
1932-4537
DOI:10.1109/TNSM.2020.3039942