Energy Efficient Federated Learning Over Wireless Communication Networks

In this paper, the problem of energy efficient transmission and computation resource allocation for federated learning (FL) over wireless communication networks is investigated. In the considered model, each user exploits limited local computational resources to train a local FL model with its colle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2021-03, Vol.20 (3), p.1935-1949
Hauptverfasser: Yang, Zhaohui, Chen, Mingzhe, Saad, Walid, Hong, Choong Seon, Shikh-Bahaei, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the problem of energy efficient transmission and computation resource allocation for federated learning (FL) over wireless communication networks is investigated. In the considered model, each user exploits limited local computational resources to train a local FL model with its collected data and, then, sends the trained FL model to a base station (BS) which aggregates the local FL model and broadcasts it back to all of the users. Since FL involves an exchange of a learning model between users and the BS, both computation and communication latencies are determined by the learning accuracy level. Meanwhile, due to the limited energy budget of the wireless users, both local computation energy and transmission energy must be considered during the FL process. This joint learning and communication problem is formulated as an optimization problem whose goal is to minimize the total energy consumption of the system under a latency constraint. To solve this problem, an iterative algorithm is proposed where, at every step, closed-form solutions for time allocation, bandwidth allocation, power control, computation frequency, and learning accuracy are derived. Since the iterative algorithm requires an initial feasible solution, we construct the completion time minimization problem and a bisection-based algorithm is proposed to obtain the optimal solution, which is a feasible solution to the original energy minimization problem. Numerical results show that the proposed algorithms can reduce up to 59.5% energy consumption compared to the conventional FL method.
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2020.3037554