Bearing fault diagnosis base on multi-scale CNN and LSTM model

Intelligent fault diagnosis methods based on signal analysis have been widely used for bearing fault diagnosis. These methods use a pre-determined transformation (such as empirical mode decomposition, fast Fourier transform, discrete wavelet transform) to convert time-series signals into frequency d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent manufacturing 2021-04, Vol.32 (4), p.971-987
Hauptverfasser: Chen, Xiaohan, Zhang, Beike, Gao, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intelligent fault diagnosis methods based on signal analysis have been widely used for bearing fault diagnosis. These methods use a pre-determined transformation (such as empirical mode decomposition, fast Fourier transform, discrete wavelet transform) to convert time-series signals into frequency domain signals, the performance of dignostic system is significantly rely on the extracted features. However, extracting signal characteristic is fairly time consuming and depends on specialized signal processing knowledge. Although some studies have developed highly accurate algorithms, the diagnostic results rely heavily on large data sets and unreliable human analysis. This study proposes an automatic feature learning neural network that utilizes raw vibration signals as inputs, and uses two convolutional neural networks with different kernel sizes to automatically extract different frequency signal characteristics from raw data. Then long short-term memory was used to identify the fault type according to learned features. The data is down-sampled before inputting into the network, greatly reducing the number of parameters. The experiment shows that the proposed method can not only achieve 98.46% average accuracy, exceeding some state-of-the-art intelligent algorithms based on prior knowledge and having better performance in noisy environments.
ISSN:0956-5515
1572-8145
DOI:10.1007/s10845-020-01600-2