Quantization of Integrable Systems with Spectral Parameter on a Riemann Surface

Given an integrable system defined by a Lax representation with spectral parameter on a Riemann surface, we construct a unitary projective representation of the corresponding Lie algebra of Hamiltonian vector fields by means of operators of covariant derivatives with respect to the Knizhnik–Zamolodc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. Mathematics 2020-11, Vol.102 (3), p.524-527
1. Verfasser: Sheinman, O. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given an integrable system defined by a Lax representation with spectral parameter on a Riemann surface, we construct a unitary projective representation of the corresponding Lie algebra of Hamiltonian vector fields by means of operators of covariant derivatives with respect to the Knizhnik–Zamolodchikov connection. It is a Dirac-type prequantization of the integrable system from a physical point of view. Simultaneously, it establishes a correspondence between integrable systems in question and conformal field theories. In the present paper, we focus on systems whose spectral curves possess a holomorphic involution. Examples are presented by Hitchin systems of the types B n , , , and also of the type A n on hyperelliptic curves.
ISSN:1064-5624
1531-8362
DOI:10.1134/S1064562420060186