On the Finiteness of the Number of Expansions into a Continued Fraction of for Cubic Polynomials over Algebraic Number Fields

We obtain a complete description of cubic polynomials f over algebraic number fields of degree over for which the continued fraction expansion of in the field of formal power series is periodic. We also prove a finiteness theorem for cubic polynomials with a periodic expansion of for extensions of o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. Mathematics 2020, Vol.102 (3), p.487-492
Hauptverfasser: Platonov, V. P., Petrunin, M. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain a complete description of cubic polynomials f over algebraic number fields of degree over for which the continued fraction expansion of in the field of formal power series is periodic. We also prove a finiteness theorem for cubic polynomials with a periodic expansion of for extensions of of degree at most 6. Additionally, we give a complete description of such polynomials f over an arbitrary field corresponding to elliptic fields with a torsion point of order .
ISSN:1064-5624
1531-8362
DOI:10.1134/S1064562420060137