Spatial and temporal changes in climate extremes over northwestern North America: the influence of internal climate variability and external forcing
Increases in the intensity and frequency of hydroclimatic extremes associated with climate change can cause significant socioeconomic problems. Assessments of projected extremes using only a limited number of general circulation model (GCM) simulations can undermine the capacity to differentiate and...
Gespeichert in:
Veröffentlicht in: | Climatic change 2021-03, Vol.165 (1-2), Article 14 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Increases in the intensity and frequency of hydroclimatic extremes associated with climate change can cause significant socioeconomic problems. Assessments of projected extremes using only a limited number of general circulation model (GCM) simulations can undermine the capacity to differentiate and communicate the contribution of internal climate variability (ICV) and external forcing and result in an underestimation of associated risks. In this study, we assess the impacts of climate change on extreme temperature and precipitation and quantify the contribution of internal variability over the Columbia, Fraser, Peace and Campbell River basins in northwestern North America (NWNA). Seven GCMs that participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5) and a large ensemble of CanESM2 model simulations (50 members) are downscaled to 1/16° spatial resolution using Bias Correction Constructed Analogues with Quantile mapping reordering version 2 (BCCAQ2). Spatial and temporal changes of climate extreme indices, representing the frequency and intensity of extreme temperature and precipitation, are assessed over the historical (1981–2010) and future (2060–2089) periods under the Representative Concentration Pathway (RCP) 8.5. The influence of ICV on the estimated trends of extreme indices is characterised. Overall, both the frequency and intensity of extreme temperature and precipitation events are projected to increase in NWNA indicating more severe dry days and wet conditions in the future. High-elevation Rocky and the Coast Mountains are at larger risks of extreme precipitation, while the Columbia basin, which already faces drought issues, is expected to experience severe dry conditions. Internal climate variability plays a significant role, particularly in the trends of precipitation-related indices. The signal to internal noise ratio analyses suggest that higher elevations experience stronger forcing signals for precipitation-based indices compared to the other regions. |
---|---|
ISSN: | 0165-0009 1573-1480 |
DOI: | 10.1007/s10584-021-03037-9 |