Instanton bundles on \(\mathbb{P}^1\times\mathbb{F}_1\)

In this paper we deal with a particular class of rank two vector bundles (\emph{instanton} bundles) on the Fano threefold of index one \(F:=\mathbb{F}_1 \times \mathbb{P}^1\). We show that every instanton bundle on \(F\) can be described as the cohomology of a monad whose terms are free sheaves. Fur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-03
Hauptverfasser: Antonelli, Vincenzo, Casnati, Gianfranco, Genc, Ozhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we deal with a particular class of rank two vector bundles (\emph{instanton} bundles) on the Fano threefold of index one \(F:=\mathbb{F}_1 \times \mathbb{P}^1\). We show that every instanton bundle on \(F\) can be described as the cohomology of a monad whose terms are free sheaves. Furthermore we prove the existence of instanton bundles for any admissible second Chern class and we construct a nice component of the moduli space where they sit. Finally we show that minimal instanton bundles (i.e. with the least possible degree of the second Chern class) are aCM and we describe their moduli space.
ISSN:2331-8422
DOI:10.48550/arxiv.2103.04411