Finite System-size Effects in Self-organized Criticality Systems
We explore upper limits for the largest avalanches or catastrophes in nonlinear energy dissipation systems governed by self-organized criticality. We generalize the idealized “straight” power-law size distribution and Pareto distribution functions in order to accommodate incomplete sampling, limited...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2021-03, Vol.909 (1), p.69 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 69 |
container_title | The Astrophysical journal |
container_volume | 909 |
creator | Aschwanden, Markus J. |
description | We explore upper limits for the largest avalanches or catastrophes in nonlinear energy dissipation systems governed by self-organized criticality. We generalize the idealized “straight” power-law size distribution and Pareto distribution functions in order to accommodate incomplete sampling, limited instrumental sensitivity, finite system-size effects, and “Black Swan” and “Dragon King” extreme events. Our findings are as follows. (i) Solar flares show no finite system-size limits up to
L
≲ 200 Mm, but solar flare durations reveal an upper flare duration limit of ≲6 hr. (ii) Stellar flares observed with Kepler exhibit inertial ranges of
E
≈ 10
34
–10
37
erg, finite system-size ranges of
E
≈ 10
37
–10
38
erg, and extreme events at
E
≈ (1–5) × 10
38
erg. (iii) The maximum flare energies of different spectral type stars (M, K, G, F, A, giants) reveal a positive correlation with the stellar radius, which indicates a finite system-size limit imposed by the stellar surface area. Fitting our finite system-size models to terrestrial data sets (earthquakes, wildfires, city sizes, blackouts, terrorism, words, surnames, web links) yields evidence (in half of the cases) for finite system-size limits and extreme events, which can be modeled with dual power-law size distributions. |
doi_str_mv | 10.3847/1538-4357/abda48 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2499086278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499086278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-48f584dcd876aa1b0642221ca42ad8287a27ce480102b6a9227be322ce5349d33</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoWKd3jwXPcclL2qQ3pWwqDDxMwVtI00QyunYm2aH-9a50ePp43_e99-CH0D0lj0xysaQFk5izQix102ouL1D2b12ijBDCccnE1zW6iXE3jVBVGXpa-94nm2_HmOweR_9r85Vz1qSY-z7f2s7hIXzr_hS0eR188kZ3Po3njXiLrpzuor076wJ9rlcf9SvevL-81c8bbBhlCXPpCslb00pRak0bUnIAoEZz0K0EKTQIY7kklEBT6gpANJYBGFswXrWMLdDDfPcQhp-jjUnthmPoTy8V8KoisgQhTy0yt0wYYgzWqUPwex1GRYmaOKkJipqgqJkT-wMf7Fra</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499086278</pqid></control><display><type>article</type><title>Finite System-size Effects in Self-organized Criticality Systems</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Aschwanden, Markus J.</creator><creatorcontrib>Aschwanden, Markus J.</creatorcontrib><description>We explore upper limits for the largest avalanches or catastrophes in nonlinear energy dissipation systems governed by self-organized criticality. We generalize the idealized “straight” power-law size distribution and Pareto distribution functions in order to accommodate incomplete sampling, limited instrumental sensitivity, finite system-size effects, and “Black Swan” and “Dragon King” extreme events. Our findings are as follows. (i) Solar flares show no finite system-size limits up to
L
≲ 200 Mm, but solar flare durations reveal an upper flare duration limit of ≲6 hr. (ii) Stellar flares observed with Kepler exhibit inertial ranges of
E
≈ 10
34
–10
37
erg, finite system-size ranges of
E
≈ 10
37
–10
38
erg, and extreme events at
E
≈ (1–5) × 10
38
erg. (iii) The maximum flare energies of different spectral type stars (M, K, G, F, A, giants) reveal a positive correlation with the stellar radius, which indicates a finite system-size limit imposed by the stellar surface area. Fitting our finite system-size models to terrestrial data sets (earthquakes, wildfires, city sizes, blackouts, terrorism, words, surnames, web links) yields evidence (in half of the cases) for finite system-size limits and extreme events, which can be modeled with dual power-law size distributions.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abda48</identifier><language>eng</language><publisher>Philadelphia: IOP Publishing</publisher><subject>Astronomical models ; Astrophysics ; Avalanches ; Disasters ; Distribution functions ; Earthquakes ; Energy dissipation ; Power law ; Seismic activity ; Size distribution ; Size effects ; Solar flares ; Stellar flares ; Stellar surfaces ; Terrestrial environments ; Terrorism ; Wildfires</subject><ispartof>The Astrophysical journal, 2021-03, Vol.909 (1), p.69</ispartof><rights>Copyright IOP Publishing Mar 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-48f584dcd876aa1b0642221ca42ad8287a27ce480102b6a9227be322ce5349d33</citedby><cites>FETCH-LOGICAL-c313t-48f584dcd876aa1b0642221ca42ad8287a27ce480102b6a9227be322ce5349d33</cites><orcidid>0000-0003-0260-2673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Aschwanden, Markus J.</creatorcontrib><title>Finite System-size Effects in Self-organized Criticality Systems</title><title>The Astrophysical journal</title><description>We explore upper limits for the largest avalanches or catastrophes in nonlinear energy dissipation systems governed by self-organized criticality. We generalize the idealized “straight” power-law size distribution and Pareto distribution functions in order to accommodate incomplete sampling, limited instrumental sensitivity, finite system-size effects, and “Black Swan” and “Dragon King” extreme events. Our findings are as follows. (i) Solar flares show no finite system-size limits up to
L
≲ 200 Mm, but solar flare durations reveal an upper flare duration limit of ≲6 hr. (ii) Stellar flares observed with Kepler exhibit inertial ranges of
E
≈ 10
34
–10
37
erg, finite system-size ranges of
E
≈ 10
37
–10
38
erg, and extreme events at
E
≈ (1–5) × 10
38
erg. (iii) The maximum flare energies of different spectral type stars (M, K, G, F, A, giants) reveal a positive correlation with the stellar radius, which indicates a finite system-size limit imposed by the stellar surface area. Fitting our finite system-size models to terrestrial data sets (earthquakes, wildfires, city sizes, blackouts, terrorism, words, surnames, web links) yields evidence (in half of the cases) for finite system-size limits and extreme events, which can be modeled with dual power-law size distributions.</description><subject>Astronomical models</subject><subject>Astrophysics</subject><subject>Avalanches</subject><subject>Disasters</subject><subject>Distribution functions</subject><subject>Earthquakes</subject><subject>Energy dissipation</subject><subject>Power law</subject><subject>Seismic activity</subject><subject>Size distribution</subject><subject>Size effects</subject><subject>Solar flares</subject><subject>Stellar flares</subject><subject>Stellar surfaces</subject><subject>Terrestrial environments</subject><subject>Terrorism</subject><subject>Wildfires</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAUxoMoWKd3jwXPcclL2qQ3pWwqDDxMwVtI00QyunYm2aH-9a50ePp43_e99-CH0D0lj0xysaQFk5izQix102ouL1D2b12ijBDCccnE1zW6iXE3jVBVGXpa-94nm2_HmOweR_9r85Vz1qSY-z7f2s7hIXzr_hS0eR188kZ3Po3njXiLrpzuor076wJ9rlcf9SvevL-81c8bbBhlCXPpCslb00pRak0bUnIAoEZz0K0EKTQIY7kklEBT6gpANJYBGFswXrWMLdDDfPcQhp-jjUnthmPoTy8V8KoisgQhTy0yt0wYYgzWqUPwex1GRYmaOKkJipqgqJkT-wMf7Fra</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Aschwanden, Markus J.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0260-2673</orcidid></search><sort><creationdate>20210301</creationdate><title>Finite System-size Effects in Self-organized Criticality Systems</title><author>Aschwanden, Markus J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-48f584dcd876aa1b0642221ca42ad8287a27ce480102b6a9227be322ce5349d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomical models</topic><topic>Astrophysics</topic><topic>Avalanches</topic><topic>Disasters</topic><topic>Distribution functions</topic><topic>Earthquakes</topic><topic>Energy dissipation</topic><topic>Power law</topic><topic>Seismic activity</topic><topic>Size distribution</topic><topic>Size effects</topic><topic>Solar flares</topic><topic>Stellar flares</topic><topic>Stellar surfaces</topic><topic>Terrestrial environments</topic><topic>Terrorism</topic><topic>Wildfires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aschwanden, Markus J.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aschwanden, Markus J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite System-size Effects in Self-organized Criticality Systems</atitle><jtitle>The Astrophysical journal</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>909</volume><issue>1</issue><spage>69</spage><pages>69-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We explore upper limits for the largest avalanches or catastrophes in nonlinear energy dissipation systems governed by self-organized criticality. We generalize the idealized “straight” power-law size distribution and Pareto distribution functions in order to accommodate incomplete sampling, limited instrumental sensitivity, finite system-size effects, and “Black Swan” and “Dragon King” extreme events. Our findings are as follows. (i) Solar flares show no finite system-size limits up to
L
≲ 200 Mm, but solar flare durations reveal an upper flare duration limit of ≲6 hr. (ii) Stellar flares observed with Kepler exhibit inertial ranges of
E
≈ 10
34
–10
37
erg, finite system-size ranges of
E
≈ 10
37
–10
38
erg, and extreme events at
E
≈ (1–5) × 10
38
erg. (iii) The maximum flare energies of different spectral type stars (M, K, G, F, A, giants) reveal a positive correlation with the stellar radius, which indicates a finite system-size limit imposed by the stellar surface area. Fitting our finite system-size models to terrestrial data sets (earthquakes, wildfires, city sizes, blackouts, terrorism, words, surnames, web links) yields evidence (in half of the cases) for finite system-size limits and extreme events, which can be modeled with dual power-law size distributions.</abstract><cop>Philadelphia</cop><pub>IOP Publishing</pub><doi>10.3847/1538-4357/abda48</doi><orcidid>https://orcid.org/0000-0003-0260-2673</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2021-03, Vol.909 (1), p.69 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2499086278 |
source | IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Astronomical models Astrophysics Avalanches Disasters Distribution functions Earthquakes Energy dissipation Power law Seismic activity Size distribution Size effects Solar flares Stellar flares Stellar surfaces Terrestrial environments Terrorism Wildfires |
title | Finite System-size Effects in Self-organized Criticality Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A43%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20System-size%20Effects%20in%20Self-organized%20Criticality%20Systems&rft.jtitle=The%20Astrophysical%20journal&rft.au=Aschwanden,%20Markus%20J.&rft.date=2021-03-01&rft.volume=909&rft.issue=1&rft.spage=69&rft.pages=69-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abda48&rft_dat=%3Cproquest_cross%3E2499086278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499086278&rft_id=info:pmid/&rfr_iscdi=true |