Finite System-size Effects in Self-organized Criticality Systems

We explore upper limits for the largest avalanches or catastrophes in nonlinear energy dissipation systems governed by self-organized criticality. We generalize the idealized “straight” power-law size distribution and Pareto distribution functions in order to accommodate incomplete sampling, limited...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2021-03, Vol.909 (1), p.69
1. Verfasser: Aschwanden, Markus J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 69
container_title The Astrophysical journal
container_volume 909
creator Aschwanden, Markus J.
description We explore upper limits for the largest avalanches or catastrophes in nonlinear energy dissipation systems governed by self-organized criticality. We generalize the idealized “straight” power-law size distribution and Pareto distribution functions in order to accommodate incomplete sampling, limited instrumental sensitivity, finite system-size effects, and “Black Swan” and “Dragon King” extreme events. Our findings are as follows. (i) Solar flares show no finite system-size limits up to L ≲ 200 Mm, but solar flare durations reveal an upper flare duration limit of ≲6 hr. (ii) Stellar flares observed with Kepler exhibit inertial ranges of E ≈ 10 34 –10 37 erg, finite system-size ranges of E ≈ 10 37 –10 38 erg, and extreme events at E ≈ (1–5) × 10 38 erg. (iii) The maximum flare energies of different spectral type stars (M, K, G, F, A, giants) reveal a positive correlation with the stellar radius, which indicates a finite system-size limit imposed by the stellar surface area. Fitting our finite system-size models to terrestrial data sets (earthquakes, wildfires, city sizes, blackouts, terrorism, words, surnames, web links) yields evidence (in half of the cases) for finite system-size limits and extreme events, which can be modeled with dual power-law size distributions.
doi_str_mv 10.3847/1538-4357/abda48
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2499086278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499086278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-48f584dcd876aa1b0642221ca42ad8287a27ce480102b6a9227be322ce5349d33</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoWKd3jwXPcclL2qQ3pWwqDDxMwVtI00QyunYm2aH-9a50ePp43_e99-CH0D0lj0xysaQFk5izQix102ouL1D2b12ijBDCccnE1zW6iXE3jVBVGXpa-94nm2_HmOweR_9r85Vz1qSY-z7f2s7hIXzr_hS0eR188kZ3Po3njXiLrpzuor076wJ9rlcf9SvevL-81c8bbBhlCXPpCslb00pRak0bUnIAoEZz0K0EKTQIY7kklEBT6gpANJYBGFswXrWMLdDDfPcQhp-jjUnthmPoTy8V8KoisgQhTy0yt0wYYgzWqUPwex1GRYmaOKkJipqgqJkT-wMf7Fra</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499086278</pqid></control><display><type>article</type><title>Finite System-size Effects in Self-organized Criticality Systems</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Aschwanden, Markus J.</creator><creatorcontrib>Aschwanden, Markus J.</creatorcontrib><description>We explore upper limits for the largest avalanches or catastrophes in nonlinear energy dissipation systems governed by self-organized criticality. We generalize the idealized “straight” power-law size distribution and Pareto distribution functions in order to accommodate incomplete sampling, limited instrumental sensitivity, finite system-size effects, and “Black Swan” and “Dragon King” extreme events. Our findings are as follows. (i) Solar flares show no finite system-size limits up to L ≲ 200 Mm, but solar flare durations reveal an upper flare duration limit of ≲6 hr. (ii) Stellar flares observed with Kepler exhibit inertial ranges of E ≈ 10 34 –10 37 erg, finite system-size ranges of E ≈ 10 37 –10 38 erg, and extreme events at E ≈ (1–5) × 10 38 erg. (iii) The maximum flare energies of different spectral type stars (M, K, G, F, A, giants) reveal a positive correlation with the stellar radius, which indicates a finite system-size limit imposed by the stellar surface area. Fitting our finite system-size models to terrestrial data sets (earthquakes, wildfires, city sizes, blackouts, terrorism, words, surnames, web links) yields evidence (in half of the cases) for finite system-size limits and extreme events, which can be modeled with dual power-law size distributions.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abda48</identifier><language>eng</language><publisher>Philadelphia: IOP Publishing</publisher><subject>Astronomical models ; Astrophysics ; Avalanches ; Disasters ; Distribution functions ; Earthquakes ; Energy dissipation ; Power law ; Seismic activity ; Size distribution ; Size effects ; Solar flares ; Stellar flares ; Stellar surfaces ; Terrestrial environments ; Terrorism ; Wildfires</subject><ispartof>The Astrophysical journal, 2021-03, Vol.909 (1), p.69</ispartof><rights>Copyright IOP Publishing Mar 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-48f584dcd876aa1b0642221ca42ad8287a27ce480102b6a9227be322ce5349d33</citedby><cites>FETCH-LOGICAL-c313t-48f584dcd876aa1b0642221ca42ad8287a27ce480102b6a9227be322ce5349d33</cites><orcidid>0000-0003-0260-2673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Aschwanden, Markus J.</creatorcontrib><title>Finite System-size Effects in Self-organized Criticality Systems</title><title>The Astrophysical journal</title><description>We explore upper limits for the largest avalanches or catastrophes in nonlinear energy dissipation systems governed by self-organized criticality. We generalize the idealized “straight” power-law size distribution and Pareto distribution functions in order to accommodate incomplete sampling, limited instrumental sensitivity, finite system-size effects, and “Black Swan” and “Dragon King” extreme events. Our findings are as follows. (i) Solar flares show no finite system-size limits up to L ≲ 200 Mm, but solar flare durations reveal an upper flare duration limit of ≲6 hr. (ii) Stellar flares observed with Kepler exhibit inertial ranges of E ≈ 10 34 –10 37 erg, finite system-size ranges of E ≈ 10 37 –10 38 erg, and extreme events at E ≈ (1–5) × 10 38 erg. (iii) The maximum flare energies of different spectral type stars (M, K, G, F, A, giants) reveal a positive correlation with the stellar radius, which indicates a finite system-size limit imposed by the stellar surface area. Fitting our finite system-size models to terrestrial data sets (earthquakes, wildfires, city sizes, blackouts, terrorism, words, surnames, web links) yields evidence (in half of the cases) for finite system-size limits and extreme events, which can be modeled with dual power-law size distributions.</description><subject>Astronomical models</subject><subject>Astrophysics</subject><subject>Avalanches</subject><subject>Disasters</subject><subject>Distribution functions</subject><subject>Earthquakes</subject><subject>Energy dissipation</subject><subject>Power law</subject><subject>Seismic activity</subject><subject>Size distribution</subject><subject>Size effects</subject><subject>Solar flares</subject><subject>Stellar flares</subject><subject>Stellar surfaces</subject><subject>Terrestrial environments</subject><subject>Terrorism</subject><subject>Wildfires</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAUxoMoWKd3jwXPcclL2qQ3pWwqDDxMwVtI00QyunYm2aH-9a50ePp43_e99-CH0D0lj0xysaQFk5izQix102ouL1D2b12ijBDCccnE1zW6iXE3jVBVGXpa-94nm2_HmOweR_9r85Vz1qSY-z7f2s7hIXzr_hS0eR188kZ3Po3njXiLrpzuor076wJ9rlcf9SvevL-81c8bbBhlCXPpCslb00pRak0bUnIAoEZz0K0EKTQIY7kklEBT6gpANJYBGFswXrWMLdDDfPcQhp-jjUnthmPoTy8V8KoisgQhTy0yt0wYYgzWqUPwex1GRYmaOKkJipqgqJkT-wMf7Fra</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Aschwanden, Markus J.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0260-2673</orcidid></search><sort><creationdate>20210301</creationdate><title>Finite System-size Effects in Self-organized Criticality Systems</title><author>Aschwanden, Markus J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-48f584dcd876aa1b0642221ca42ad8287a27ce480102b6a9227be322ce5349d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomical models</topic><topic>Astrophysics</topic><topic>Avalanches</topic><topic>Disasters</topic><topic>Distribution functions</topic><topic>Earthquakes</topic><topic>Energy dissipation</topic><topic>Power law</topic><topic>Seismic activity</topic><topic>Size distribution</topic><topic>Size effects</topic><topic>Solar flares</topic><topic>Stellar flares</topic><topic>Stellar surfaces</topic><topic>Terrestrial environments</topic><topic>Terrorism</topic><topic>Wildfires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aschwanden, Markus J.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aschwanden, Markus J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite System-size Effects in Self-organized Criticality Systems</atitle><jtitle>The Astrophysical journal</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>909</volume><issue>1</issue><spage>69</spage><pages>69-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We explore upper limits for the largest avalanches or catastrophes in nonlinear energy dissipation systems governed by self-organized criticality. We generalize the idealized “straight” power-law size distribution and Pareto distribution functions in order to accommodate incomplete sampling, limited instrumental sensitivity, finite system-size effects, and “Black Swan” and “Dragon King” extreme events. Our findings are as follows. (i) Solar flares show no finite system-size limits up to L ≲ 200 Mm, but solar flare durations reveal an upper flare duration limit of ≲6 hr. (ii) Stellar flares observed with Kepler exhibit inertial ranges of E ≈ 10 34 –10 37 erg, finite system-size ranges of E ≈ 10 37 –10 38 erg, and extreme events at E ≈ (1–5) × 10 38 erg. (iii) The maximum flare energies of different spectral type stars (M, K, G, F, A, giants) reveal a positive correlation with the stellar radius, which indicates a finite system-size limit imposed by the stellar surface area. Fitting our finite system-size models to terrestrial data sets (earthquakes, wildfires, city sizes, blackouts, terrorism, words, surnames, web links) yields evidence (in half of the cases) for finite system-size limits and extreme events, which can be modeled with dual power-law size distributions.</abstract><cop>Philadelphia</cop><pub>IOP Publishing</pub><doi>10.3847/1538-4357/abda48</doi><orcidid>https://orcid.org/0000-0003-0260-2673</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2021-03, Vol.909 (1), p.69
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2499086278
source IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Astronomical models
Astrophysics
Avalanches
Disasters
Distribution functions
Earthquakes
Energy dissipation
Power law
Seismic activity
Size distribution
Size effects
Solar flares
Stellar flares
Stellar surfaces
Terrestrial environments
Terrorism
Wildfires
title Finite System-size Effects in Self-organized Criticality Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A43%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20System-size%20Effects%20in%20Self-organized%20Criticality%20Systems&rft.jtitle=The%20Astrophysical%20journal&rft.au=Aschwanden,%20Markus%20J.&rft.date=2021-03-01&rft.volume=909&rft.issue=1&rft.spage=69&rft.pages=69-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abda48&rft_dat=%3Cproquest_cross%3E2499086278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499086278&rft_id=info:pmid/&rfr_iscdi=true